Title

以原子層沉積法生長銦摻雜氧化鋅膜於(11-20)面氧化鋁基板之特性研究

Translated Titles

Growth and characterization of In-doped ZnO films on (11-20) sapphire substrates using atomic layer deposition

DOI

10.6845/NCHU.2010.00843

Authors

蕭琦穎

Key Words

銦摻雜氧化鋅 ; 原子層沉積法 ; 透明導電氧化膜 ; atomic layer deposition(ALD) ; transparent conductive oxide (TCO)

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

龔志榮

Content Language

繁體中文

Chinese Abstract

本研究採用原子層沉積法成長氧化鋅摻雜銦薄膜於(11-20)面氧化鋁基板上。實驗以二乙基鋅(DEZn)、三甲基銦(TMIn)與高純度氧化亞氮(N2O)做為II、III 與VI 族的前驅氣體,使用高度純化之氮氣當作輸送氣體。藉由固定η = TMIn/(DEZn+TMIn) 氣相比,改變TMIn進入腔體次數及改變η 氣相比等實驗參數,來獲得低電阻高穿透性的銦摻雜氧化鋅薄膜。銦摻雜氧化鋅薄膜之光電物理特性與成分組成百分比分別使用光學穿透量測儀、霍爾量測、X-光繞射、掃描式電子顯微鏡與X 射線光電子能譜儀來鑑定。研究結果顯示銦摻雜有助於提高氧化鋅薄膜的光學及電學特性,於特定製程條件下,可以獲得穿透率高達90%以上及電阻率可以低到8.7x10-4Ω-cm 的銦摻雜氧化鋅薄膜。

English Abstract

Indium-doped zinc oxide (IZO) films were deposited on (11-20) sapphire substrates at 300°C by atomic layer deposition (ALD) using diethyl-zinc (DEZn),trimethyl-indium (TMIn) and nitrous oxide (N2O). The optical, structural and conductive properties of the ALD-grown IZO films were characterized by optical transmission spectroscopy, x-ray diffractometry (XRD), field-emission scanning electron microscopy (FESEM), and Hall measurements. The atomic percentages and chemical states of ALD-grown IZO films were also analyzed by x-ray photoelectron spectroscopy (XPS). It was found that In-doping tended to enhance conductivity and transmittance of the IZO film. Under certain conditions, ALD-grown IZO films exhibit more than 90% optical transmittance in the visible spectra with resistivities being in the range of high 10^-4 Ω-cm.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. [1] H. Hosono, Thin Solid Films 515, 6000 (2007)
    連結:
  2. [4] T. Minami, Thin Solid Films 516, 1314 (2008)
    連結:
  3. [5] C.G. Granqvist, A. Hulta˚ker, Thin Solid Films 411, 1(2002)
    連結:
  4. [6] Y. L. Wang, G. Y. Wang, X. Z. Zhang and D. P. Yu, J. Crystal Growth 287, 89 (2006)
    連結:
  5. [7] J. B. Baxter and E. S. Aydil, J. Crystal Growth 274, 407 (2005)
    連結:
  6. [8] K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films 102,1(1983)
    連結:
  7. [9]陳建華,”p 型透明導電膜應用於有機發光二極體”, 國立成功大
    連結:
  8. [12] J. Chen and T. Fujita, Jpn. J. Appl. Phys. 42, 602 (2003)
    連結:
  9. [15] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003)
    連結:
  10. [17] T. Koyama and S. F. Chichibu, J. Appl. Phys. 95 7856 (2004).
    連結:
  11. [18] “Atomic Layer Epitaxy”, edited by T. Suntola and M. Simposn,(1990) 76
    連結:
  12. [22] B. Lin and Z. Fu, Appl. Phys. Lett. 79, 943 (2001)
    連結:
  13. [24] D. A. Neamen, “SEMICONDUCTOR PHYSICS AND DEVICES:
    連結:
  14. [26] L. Pauling, The Nature of The Chemical Bond, 3rd edition, Cornell University Press, 1960
    連結:
  15. [30]郭耿宏,”原子層沉積法直接低溫成長氧化鋅薄膜於(11-20)氧化
    連結:
  16. [31] W. G. Jeong, E. P. Menu and P. D. Dapkus, Appl. Phys. Lett. 55, 244(1989)
    連結:
  17. [36] F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, Thin Solid Films 359, 244 (2000)
    連結:
  18. [41] P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall,New Jersey, 1997
    連結:
  19. [2] X. Jiang, F. L. Wong, M. K. Fung and S. T. Lee, Appl. Phys. Lett. 83,1875 (2003)
  20. [3] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori and T. Mise, Solar Energy 77, 739 (2004)
  21. 學化學工程研究所碩士論文, 2003
  22. [10] K. Badeker, Ann. Phys. (Leipzig), 22, 749(1907).
  23. [11] “ Zinc Oxide Bulk, Thin Films and Nanostructures : Processing, Properties and Applications ”, edited by Chennupati Jagadish and Stephen J. Pearton (2006)
  24. [13] K. H. Bang, D. K. Hwang, M. C. Jeong, K. S. Sohn and J. M. Myoung, Solid State Commun. 126, 623 (2003)
  25. [14] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)
  26. [16] R. Wahab, S.G. Ansari, Y. S. Kim, M. Song, H. S. Shin, Applied Surface Science 255, 4891 (2009)
  27. [19] Y. W. Heo, K. Ip, S. J. Pearton, D. P. Norton and J. D. Budai, Appl. Surface Sci. 252, 7442 (2006)
  28. [20] E. G. Bylander, J. Appl. Phys. 49, 1188 (1978)
  29. [21] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voiget, Appl. Phys. Lett. 68, 403 (1996)
  30. [23]陳力俊等著, “材料電子顯微鏡學” ,國科會精密儀器發展中心
  31. Basic Principles”, 2nd ed., McGraw-Hill Companies, USA, 1997
  32. [25]羅吉宗編著, “薄膜科技與應用”,修訂二版,全華圖書股份有
  33. 限公司
  34. [27] H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, and D.C. Look, Appl. Phys. Lett. 77, 3761 (2000)
  35. [28]許樹恩等著, “X 光繞射原理與材料結構分析” ,中國材料科學學會
  36. [29] T.Tsurumi, S. Nishizawa, N.Ohashi and T. Ohgaki,Jpn. J. Appl. Phys. 38,3682(1999)
  37. 鋁基板之研究”, 國立中興大學物理所碩士論文, 2008
  38. [32] L. Dupont, C. Maugy, N. Naghavi, C. Guery, and J.-M. Tarascon, J. Solid State Chem. 158, 119 (2001) 77
  39. [33] J. F. Watts and J. Wolstenholme, An introduction to surface analysis by XPS and AES, J. Wiley, 2003
  40. [34] N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.B. Leriche, and C. Guery, J. Mater. Chem. 10, 2315 (2000)
  41. [35] M. F. Guimon, G. Pfister-Guillouzo, M. Bremont, W. Brockmann, C. Quet, and J. Y. Chenard, Appl. Sur. Sci. 108, 149 (1997)
  42. [37] X.H. Li, H.Y. Xu, X.T. Zhang, Y.C. Liu, J.W. sun, and Y.M. Lu, Appl. Phys. Lett. 95, 191903 (2009)
  43. [38] H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon and I. Adesida, Jpn. J. Appl. Phys. 43, 976 (2004)
  44. [39] M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya , Thin Solid Films 280, 20 (1996)
  45. [40] M. Chen, Z. L. Pe, C. Su, L. S. We and X. Wang, Mater. Lett. 48, 194 (2001)
Times Cited
  1. 李俊緯(2012)。銦摻雜氧化鋅薄膜在氮化銦鎵發光二極體透明導電層應用之研究。中興大學物理學系所學位論文。2012。1-60。