Translated Titles

Temporal and Spatial variations of Turbulent Flow over a Scour Hole Downstream of a Grade-Control Structure with a PIV System



Key Words

固床工 ; 沖刷坑 ; PIV ; 超越機率 ; 紊流特性 ; groundsill ; scour ; PIV ; exceeding probability ; turbulent characteristics



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

臺灣地理環境特殊加上近年來降雨過度集中,使得河床泥砂沖刷顯著,故常使用固床工穩定河床。惟固床工下游沖刷坑常隨時間逐漸變大,甚至造成基礎易被掏空而破壞。因此,本研究乃針對固床工下游沖刷坑隨時間與空間的變化做深入之研究。 本研究利用質點影像測速儀於室內動床輸砂渠槽試驗進行量測,分析項目包含不同時程(15 mins、1 hr、5 hrs)、單寬流量(0.0167、0.0283、0.0475 ㎡/s)、坡度(1%、1.5%)之平均速度、紊流強度及雷諾應力等紊流特性參數。此外,將底床剪應力與希爾茲圖之臨界剪應力比較,並計算全剖面底床沖刷超越機率。 實驗結果顯示,水流以潛沒式射流(submerged jet)進入沖刷坑,於各時程紊流流場變化最急劇的地方大多發生在高速水舌區及水躍區,且流速剖面於第一個底床坡度折點後至垂直斷面最大水深位置之間,因擴散現象局部地區會逐漸發展成近似常態分佈曲線。除大流量組次(M-3、S-3)外,其餘組次之最大沖刷深度處及爬升處於t= 5 hrs已接近平衡狀態,全剖面底床超越機率隨時間而降低,並隨流量及坡度增加而增加。結果顯示,大流量組次於5 hrs後沖刷坑仍有繼續拉長之趨勢。

English Abstract

Due to Taiwan’s special geographical environment and the excessive concentration of rainfall in recent years, groundsills are frequently used to reduce scouring and stabilize the riverbed. However, the local scour downstream of the groundsill may grow with time, even causing the collapse of the structure. In order to increase our understanding of the temporal and spatial variations of the scour hole downstream of a grade-control structure, this study uses a PIV system to measure the mean velocity, turbulence intensity and Reynolds stress etc. for the movable bed tests in an indoor flume. The independent variables include the experimental duration(15 mins,1 hr, and 5 hrs), unit discharge(0.0167, 0.0283 and 0.0475 ㎡/s), and channel bed slope(1% and 1.5%). In addition, the measured bed shear stresses are compared with critical shear stresses calculated from the Shields diagram, and the exceeding probabilities are calculated along the whole scour hole surface. According to the experiment results, the flow enters the scour hole with a submerged jet, and the most violent variation of the turbulent flow occurs in the areas of the high-speed nappe and the hydraulic jump. Because of the diffusion phenomenon, velocity profiles will gradually develop into approximate normal distribution curves between the section with maximum scour depth and that with maximum water depth. The reach between the maximum scour depth and the maximum flow depth have almost reached equilibrium at t= 5 hrs except the large unit discharge (M-2 and M-3) cases. Besides, the exceeding probability decreases with time, and increases with the unit discharge and slope. The results also reveal that the scour hole still continuously stretches after 5 hrs for the large unit discharge cases.

Topic Category 工學院 > 土木工程學系所
工程學 > 土木與建築工程
  1. 1.王忠翔(2015),「明渠流通過固床工下游粗糙底床沖刷坑之紊流流場
  2. 2.李柏葦(2014),「雙道固床工下游沖刷坑流場之紊流特性研究」,國
  3. 3.吳紋瑩(2012),「雙道固床工下游沖刷之室內試驗研究」,國立中
  4. 6.張天鋒(2002),「光滑渠槽明渠流通過透水四面體框架之紊流特性
  5. 7.張凱博(2010),「變量流作用下之固床工沖刷室內試驗研究」,國
  6. 9.彭建文(2014),「軟弱岩質河道固床工之破壞機制及穩定分析」,
  7. 11.溫啟倫(2013),「雙道固床工下游沖刷坑流場之PIV量測分析」
  8. the American Society of Civil Engineers, 115 (1),
  9. Delft, Publication 40).
  10. temporal evolution of a scour hole downstream of a
  11. Profiles Downstream of Hydraulic Jump”, J. Hydraul.
  12. scouring downstream of bed sills”, J. Hydraul. Res.,
  13. “Morphological effects of bed sills in degrading
  14. rivers”, J. Hydraul. Res., 38(2), 89-96.
  15. 18. Grass, A. J. (1971) “Structural Features of Turbulent
  16. 4-90, Faculty of civil Engineering, Hydraulic and
  17. (2002) “Local scouring in low and high gradient
  18. 22. Nezu, I. and Nakagawa, H. (1993) “Turbulent
  19. structures and bursting phenomena over roughness
  20. discontinuity in open channel flows”, turbulent
  21. flows, Scientific Research Activities, 122-129.
  22. measurements with a laser Doppler anemometer”, J.
  23. Hydraul Eng., 112(5), 335-355.
  24. turbulence over fixed and weakly mobile gravel beds”,
  25. J. Hydraul. Eng., 126(9), 679–690.
  26. 25. Pao, H. F. (1967) ‘‘Fluid dynamics’’, Charles
  27. E.Merrillbooks, Inc. Columbus, Ohio.
  28. 26. Schlichting, H. (1979) “boundary layer theory”,
  29. acoustic doppler velocimeter (ADV)”, J. Eng. Mech.,
  30. mixing in open Channel Flow”, J. Hydr. Engrg., ASCE.
  31. 分析」,國立中興大學土木工程學系碩士論文。
  32. 立中興大學土木工程學系碩士論文。
  33. 興大學土木工程學系碩士論文。
  34. 4.施如學(2014),「丁壩沖刷坑的三維水流流態數值模擬」,重慶交
  35. 通大學碩士論文。
  36. 5.陳瑞昌(2002),「護坦及尾檻下游之局部沖刷分析」,國立中央大
  37. 學土木工程研究所碩士論文。
  38. 研究」,國立中興大學土木工程學系碩士論文。
  39. 立中興大學土木工程學系碩士論文。
  40. 8.彭思顯(1994),「投潭水作用下局部沖刷之動態研究」,國立中興
  41. 大學土木工程學系碩士論文。 
  42. 國立交通大學土木工程學系碩士論文。
  43. 10.楊翰宗(1998),「陡坡光滑渠流水力特性之研究」,國立中興大
  44. 學土木工程學系碩士論文。
  45. ,國立中興大學土木工程學系碩士論文。
  46. 12. Albertson, M. L., Y. Dai, R. Jensen, and H. Rouse
  47. (1950) “Diffusion of submerged jets”, transactions of
  48. 639–664.
  49. 13. Breusers, H. N. C. (1966) “Conformity and time scale
  50. in two-dimensional local scour”, Proc. Symposium on
  51. model and prototype conformity: 1-8, Hydraulic
  52. research Laboratory Poona (also Delft Hydraulic,
  53. 14. Dodaro, G.; Tafarojnoruz, A.; Stefanucci, F.; Adduce,
  54. C.; Calomino, F.; Gaudio, R.; Sciortino, G. “An
  55. experimental and numerical study on the spatial and
  56. rigid bed”, in Proceedings of the International
  57. Conference on Fluvial Hydraulics, River Flow,
  58. Lausanne, Switzerland, 3–5 September 2014; pp. 1415
  59. –1422.
  60. 15. Farhoudi, J. and Smith, K. V. H. (1985) “Local Scour
  61. Res., 23(4), 343-358.
  62. 16. Gaudio, R. and Marion, A. (2003) “Time evolution of
  63. 41(3), 271-284.
  64. 17. Gaudio, R., Marion, A. and Bovolin, V. (2000)
  65. Flow over Smooth and Rough Boundaries”, J. Fluid
  66. mech., Vol. 50, PP.233-255.
  67. 19. Hoffmans, G. J. C. M. (1990) “Concentration and flow
  68. velocity measurements in a local scour hole”, Report
  69. Geotecnical Engineering Division, Delft Univercity of
  70. Technology, Delft.
  71. 20. Hoffmans, G. J. C. M., anf Verheji, H. J. (1997)
  72. “Scouring manual”, Balkema, Rotterdam, The
  73. Nethelands.
  74. 21. Lenzi, M. A., Marion, A., Comiti, F. and Gaudio, R.
  75. streams at bed sills”, J. Hydraul. Res., 40(6), 731
  76. -739.
  77. structures and related environment in various water
  78. 23. Nezu, I. and Rodi, W. (1986) “Open-channel flow
  79. 24. Nikora, V. I., and Goring, D. G. (2000) “Flow
  80. Seventh Edition, McGraw-Hill Book Company , 596-602.
  81. 27. Shields, A. (1936) “Anwendung der
  82. ahnlichkeitsmechanik und turbulenz forschung auf die
  83. geschiebebewegung”, Mitteil. Preuss. Versuchsanst.
  84. wasser, Erd, Schiffsbau, Berlin, Nr. 26.
  85. 28. Song, T., and Chiew, Y. M. (2001) “Turbulence
  86. measurement in nonuniform open-channel flow using
  87. 127 (3), 219–232.
  88. 29. Webel, G. and Schatzmann, M. (1984) “Transverse
  89. Vol. 110, No.4, PP.423-435.
  90. 30. Zanke,U.(1978) “Zusammenhange zwischen stromung und
  91. sedimenttransport”, Mitt. Des Franzius Instituts der
  92. Univ. Hannover, Nr. 47,Nr. 48 (in German).
Times Cited
  1. 蕭國廷(2017)。固床工下游側流場之PIV量測-猝發現象之初探。中興大學土木工程學系所學位論文。2017。1-104。