Title

汙染土壤浸水環境下之重金屬釋出

Translated Titles

Release of Heavy Metals from Polluted Soils under Flooded Condition

DOI

10.6845/NCHU.2008.00680

Authors

林志豪

Key Words

土壤重金屬 ; 浸水孵育 ; 連續萃取 ; 還原電位 ; 鐵錳氧化物 ; 硫化物 ; heavy metals in soils ; incubation ; sequential extractions ; redox potential ; Fe-Mn oxyhydroxides ; sulfate

PublicationName

中興大學土壤環境科學系所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

黃政恆

Content Language

繁體中文

Chinese Abstract

還原電位與pH值對土壤重金屬之生物有效性有很重要的影響,本研究探討還原作用與pH值之改變,對土壤溶液中重金屬濃度之影響,以瞭解受重金屬污染水田土壤浸水後重金屬的釋出作用。本研究分別選取彰化縣及桃園縣六個遭受不同重金屬污染程度的水田土壤,進行孵育作用,測定土壤溶液鎘、鋅、鎳、鉻及銅等水溶性重金屬含量,並比較孵育前後土壤重金屬分布型態的轉變。所選取彰化縣土壤質地為坋質壤土,土壤pH值呈略酸或中性,受污染重金屬種類為鎘、鋅、鎳、鉻及銅;桃園縣土壤質地為黏土,土壤pH值為酸性至極酸性,主要受到重金屬鎘之汙染,部分土壤的銅、鉻及鋅也有偏高現象。秤取一公斤的土壤,加入去離子水飽和,使土水比呈1:1,模擬土壤浸水30天,在孵育期間定期測定土壤還原電位及抽出溶液之pH值、鐵、錳、硝酸根、硫酸根及重金屬濃度,再以BCR連續萃取法比較彰化及桃園土壤樣品浸水孵育前後重金屬型態的轉變。 結果顯示污染土壤在孵育期間後,多數土壤pH值因微生物無氧呼吸作用,使pH值逐漸趨近於7,然而也有土壤於孵育期間,pH值雖有上升情形,但只能達到6,研判為土壤初始pH值偏酸及高濃度重金屬污染而抑制微生物活性。桃園土壤浸水孵育後的還原電位下降較彰化土壤平緩,可能是桃園土壤含有較高鐵錳氧化物緩衝還原電位下降的趨勢。土壤溶液分析結果顯示,受較高重金屬污染土壤的土壤溶液重金屬有較高趨勢,然而孵育期間土壤溶液pH值偏酸的土壤樣品,溶液中卻有最高重金屬含量,而與受重金屬污染總量無關,因此認為土壤浸水飽和後,溶液中重金屬的濃度不僅受重金屬總量所影響,土壤pH值為主要控制因素。受重金屬鉻高度污染的土壤,在孵育期間無法測得土壤溶液中鉻含量,可能是生成氫氧化鉻或其他含鉻化合物沉澱,因此鉻污染土壤對環境衝擊較少,建議可以增加管制標準濃度。浸水孵育初期,還原電位快速下降,溶液中錳、鐵濃度逐漸增加,爾後重金屬濃度也有增加現象,可能是與鐵錳氧化物結合型態的重金屬,因鐵錳氧化物還原而釋出至土壤溶液中;隨著孵育期間的進行,錳、鐵濃度仍持續增加中,然而溶液中重金屬的濃度反而呈現下降現象,以Minteq套裝軟體推估發現,只有部份樣品還原電位顯示可能是重金屬形成硫化物沉澱所導致,然而所有樣品於孵育期間的硫酸根均有減少的現象,因此微域環境中也有可能有硫化重金屬沉澱的可能;另一個造成孵育期間溶液重金屬減少的原因,也可能因為孵育期間pH值上升與原先佔據交換位置鐵錳氧化物還原,而使土壤交換位置增加因此對溶液中重金屬再吸附所造成。 連續性抽出結果顯示,孵育前土壤樣品,鎘存在於交換態的比例遠高於其它重金屬種類;銅與鋅在低濃度時則主要分布在殘留態與可還原態,然而隨著總濃度提高,交換態分布的比例則大幅增加,因此認為生物有效性比例會隨著重金屬總量增加而增加;鎳在土壤中有大部分是存在於可還原態或可氧化態。孵育後土壤經冷凍乾燥處理後,結果顯示土壤鎳、鉻及鋅重金屬於孵育前後並沒有太大改變,然而土壤鎘及銅重金屬則呈現交換態減少,而可還原態及/或可氧化態增加趨勢,因此認為反覆乾溼交替作用可能有助於降低土壤重金屬的生物有效性。

English Abstract

Chemical speciation of trace elements in soils depend on redox potential and pH. In this research, the effects of redox potential and pH on metal solubility were investigated and we addressed the effect of heavy metal contaminated paddy soils flooded on dissolution of selected heavy metals. Twelve paddy soils with different heavy metal content were taken from Changhua and Taoyuan for flooded experiments. Redox potential and pH, concentrations of Cd, Zn, Ni, Cr, and Cu were measured in the solutions and compared the fractionations of chemical speciation of trace elements before and after incubation. Soil samples of Changhua site were silt loam soil contaminated mainly with Cd, Zn, Ni, Cr, and Cu. The pH was classified as slightly acid to neutrality. Soils taken from Taoyuan were clay soil contaminated mainly Cd and soil pH was acid.1 kg of air-dried sample sieved to 2mm was mixed with 1 L of water. To simulate soil flooded reach 30 days and redox potential, pH, and concentrations of Fe, Mn, NO3-, SO42-, Cd, Zn, Ni, Cr, Cu were measured in the solutions. Applied BCR sequential extraction on twelve soils in Changhua and Taoyuan and then compared the fractionations of chemical speciation of heavy metals before and after inundated. Result of flooded experiments showed that most soils reach to pH 7 due to anaerobic respiration of microorganism. Although pH of some samples rise, they didn’t reach to approximately pH 7 during incubation. Result of chemical analyses of soil solutions show that the soils with high heavy metal content have higher heavy metal concentration in the soil solution. At low pH value, the solution has the highest heavy metal concentration. It has no relationship with total heavy metal content. For this reason, the effect of pH was considered more significant than total content of heavy metals. In initial stage of incubation, redox potential drops fast. The concentration of Mn and Fe increase gradually in the solution and then heavy metal content in soil solutions also increase. It was proposed that heavy metals release with Fe-Mn oxyhydroxides reduced under reducing conditions. The concentration of Fe and Mn still increases in solutions with time increasing of incubation but the concentration of heavy metals in solutions would decrease.The model Minteq (Gustafsson, 2004) estimates the result and finds that may form heavy metals precipitated as insoluble sulfide, and it also can be proved that sulfate reduce in solutions. Result of sequential extractions show that most of Cd exists in exchangeable form than other heavy metals before incubation. Most of Cu and Zn are residual or reducible in soils with low heavy metal concentration but with high content heavy metals, Cu and Ni would distribute in incubation. Most of Ni distributes in reducible or oxidizable. Cr only exists in oxidizable or residual at low concentration and few of Cr exists in exchangeable < 1% at high heavy metal content. After incubation through 30 days, result of experiment shows that exchangeable form would reduce and increase reducible or oxidizable form. So think repeatedly that it may contribute to reducing the biological activity of heavy metal in soils.

Topic Category 農業暨自然資源學院 > 土壤環境科學系所
生物農學 > 生物環境與多樣性
Reference
  1. 行政院環境保護署。2001a。土壤污染監測基準。行政院環境保護署。環署水字第0073654號。
    連結:
  2. 行政院環境保護署。2001b。土壤汙染管制基準。行政院環境保護署。環署水字第0073684號。
    連結:
  3. 行政院環境保護署。2001。農地土壤重金屬調查與場址列管計畫。
    連結:
  4. 行政院環境保護署。2003。土壤中重金屬檢測方法- 王水消化法(NIEA 21.63B)。
    連結:
  5. 鄭光喆。2007。重金屬污染土壤之不同單一與連續性抽出方法評估。國立中興大學土壤環境科學系碩士論文。
    連結:
  6. Alloway, B. J. 1995. Heavy metal in soils, 2nd ed., Blackie Academic and Professional, Glasgow, UK.
    連結:
  7. Ankley, G. T., G. L. Phipps, E. N. Leonard, D. A. Benoit, V. R. Mattson, P. A. Kosian, A. M. Cotter, J. R. Dierkes, D. J. Hansen, and J. D. Mahony, 1991. Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ. Toxicol. Chem. 10:1299-1307.
    連結:
  8. Backes, D. 1995. The biosocial perspective and environmental communication research. J. Commun. 45:147–163.
    連結:
  9. Berti, W. R. and L. W. Jacobs. 1996. Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications. J. Environ. Qual. 25: 1025-1032.
    連結:
  10. Bingham, F. T., A. L. Page, R. J. Mather, and T. J. Ganje. 1976. Cadmium availablity to rice in sludge-amended soil under ‘flood’ and ‘nonflood’ culture. Soil Sci. Soc. Am. J. 40: 715-719.
    連結:
  11. Bohn, H. L. 1971. Redox potential. Soil Sci. 112:39-45.
    連結:
  12. Brennan, E. W., and W. L. Lindsay. 1996. The role of pyrite in controlling metal ion activities in highly reduced soils. Geochim. Cosmochim. Acta 60:3609–3618.
    連結:
  13. Calmano, W., J. Hong, and U. Förstner. 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Wat. Sci. Technol. 28: 223–235.
    連結:
  14. Christensen, T. H. 1984. Cadmium soil sorption at low concentrations:I. Effect of time, cadmium load, pH, and cadmium. Wat. Air Soil Pollut. 21: 105-114.
    連結:
  15. Christensen, T. H. 1987. Cadmium soil sorption at low concentrations:V. Effect of competition by other heavy metals. Wat. Air. Soil Pollut. 34: 293-303.
    連結:
  16. Cogger, G., P. E. Kennedy, and D. Carlson. 1992. Seasonally saturated soils in the puget lowland II. Measuring and interpreting redox potentials. Soil Sci. 154: 50-58.
    連結:
  17. Di Toro, D. M., J. D. Mahony, D. J. Hansent, K. J. Scott, M. B. Hicks, S. M. Mayr, and M. S. Redmond. 1990. Toxcity of cadmium in sedimemts:The role of acid-volatile surfide. Environ. Toxicol. Chem. 9:1487-1502
    連結:
  18. Elliott, H. A., M. R., Liberti, and C. P., Huang. 1986. Competitive Adsorption of heavy metals by Soils. J. Environ. Qual. 15:214-219.
    連結:
  19. Evans, L. J., G. A. Spiers, and G. Zhao. 1995. Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils. Intern. J. Environ. Anal. Chem. 59:291-302.
    連結:
  20. Faulkner, S. P., W. H. Patrick, Jr., and R. P. Gambrell. 1989. Field techniques for measuring soil parameyers. Soil Sci. Soc. Am. J. 53:883-890.
    連結:
  21. Fiedle, S. and M. Sommer. 2004. Water and redox conditions in wetland soils—Their influence on pedogenic oxides and morphology. Soil Sci. Soc. Am. J. 68:326–335.
    連結:
  22. Flick, D. F., H. F. Kraybill, and J. M. Dimitroff. 1971. Toxic effects of cadmium: A Review. Environ. Res. 4: 71-85.
    連結:
  23. Gambrell, R. P. 1994. Trace and toxic metals in wetlands: a review. J. Environ. Qual. 23:883–891.
    連結:
  24. Gao, S., K. K. Tanji, S. C. Scardaci, and A. T. Chow. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil. Sci. Am. J. 66:805-817.
    連結:
  25. Gardner, W. H. 1986. Water content. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9: 493-544.
    連結:
  26. Ghanem, S. A. and P. S. Mikkelsen. 1987. Effect of organic matter changes in soil zinc fractions found in wetland soils. Commun. Soil Sci. Plant Anal. 18:1217–1234.
    連結:
  27. Gleyzes, C., S. Tellier, and M. Atruc. 2002. Fraction studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. J. Anal. Chem. 21:451-467.
    連結:
  28. Guevara-Riba, A., A. Sahuquillo, R. Rubio, and G. Rauret. 2004. Assessment of metal mobility in dredged harbour sediments from Barcelona, Spain. Science of the Total Environment. 321:241-255.
    連結:
  29. Holford, I. C. R. and W. H. Patrick., Jr. 1979. Effects of reduction and pH changes on phosphate sorption and mobility in an acid soil, Soil Sci. Soc. A. J. 43: 292–297
    連結:
  30. Hou, A. X., G. X. Chen, Z. P. Wang, O. V. Cleemput, and W. H. Patrick, Jr. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J. 64:2180–2186.
    連結:
  31. Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S. C. Brooks, and W. B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33:2939-2944.
    連結:
  32. Jones, G. B.and G. B. Belling. 1967. The movement if copper, molybdenum, and selenium in soils as indicated by radioactive isotopes. Austra. J. Agri. Res. 18: 733–740.
    連結:
  33. Jugsujinda, A. and W. H. Patrick, Jr. 1977. Growth and nutrient uptake by rice in a flooded soil under controlled aerobicanaerobic and pH conditions. Agron. J. 69:705-710
    連結:
  34. Kaasalainen, M. and M. Yli-Halla. 2003 Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 126: 225-233.
    連結:
  35. Lake, D. L., P. W. W. Kirk, and J. N. Lester. 1984. Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: A review. J. Environ. Qual. 13:175-183.
    連結:
  36. Light, S. T. 1972. Standard solution for redox potential measurements. Anal. chem. 44:1038-1039
    連結:
  37. López-Sánchez, J. F., R. Rubio, and G. Rauret. 1993. Comparison of two sequential extraction procedures for trace metal partitioning in sediments. Intern. J. Environ. Anal. Chem. 51:113-121.
    連結:
  38. López-Sánchez, J. F., R. Rubio, C. Samitier, and G. Rauret. 1995. Trace metal partitioning in mrine sediments and sludges deposited off the coast of Barcelona (Spain). Wat. Res. 30:153-159.
    連結:
  39. Maiz, I., M. V. Esnaola, and E. Millán. 1997. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci. Total Environ. 206:107-115.
    連結:
  40. Masscheleyn, P. H., R. D. Delaune, and Patrick, W. H., Jr. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25:1414-1419.
    連結:
  41. McBride, M. B., and J. J. Blasiak. 1979. Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Soc. Am. J. 43: 866-870.
    連結:
  42. McBride, M. B. 1989. Reactions controlling heavy metal solubility in soils. Adv. Soil Sci. 10:1-56.
    連結:
  43. Mehra, O. P.and M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbon¬ate. Clays Clay Miner. 7:317-27
    連結:
  44. Mertz, W. 1969. Chromium occurrence and function in biological systems. Physiol. Rev. 49: 163-172
    連結:
  45. Miller, W. P., D. C. Maters, and L. W. Zelazny. 1986. Effect of sequence in extraction of trace metals from soils. Soil Sci. Am. J. 50:598-601.
    連結:
  46. Morera, M. T., J. C. Echeverría, C. Mazkiarán, and J. J. Garrido. 2001. Isotherms and sequential extraction procedures for evaluation sorption and distribution of heavy metals in soils. Environ. Pollut. 113: 135-144.
    連結:
  47. Mossop, K. F. and C. M. Davidson. 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta. 478: 111-118.
    連結:
  48. Naidu, R., N. S. Bolan, R. S. Kookana, and K. G. Tiller. 1994. Ionic strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45: 419–429.
    連結:
  49. Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p.961-1010. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA.
    連結:
  50. Patrick, W. H. Jr. and M. Verloo. 1998. Distribution of soluble heavy metals between ionic and complexed forms in a saturated sediment as affected by pH and redox conditions. Wat. Sci. Tech. 37: 165-172.
    連結:
  51. Patrick, W. H., Jr. and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20: 323-359.
    連結:
  52. Patrick, W. H. Jr. and A. Jugsujinda. 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded Soil. Sci. Soc. Am. J. 56: 1071–1073.
    連結:
  53. Pattersom, R. R. and S. Fendorf. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 31:2039-2044.
    連結:
  54. Pickering, W. F. and H. Denise. 1980. The effect of pH on the retention of Cu, Pb, Zu and Cd by clay humic acid mixtures. Wat. Air Soil Pollut. 14: 13-21.
    連結:
  55. Ponnamperuma, F. N. 1984. Effects of flooding on soils. Flooding and Plant Growth. pp. 10–42.
    連結:
  56. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29-96.
    連結:
  57. Quevauviller, Ph. A. Ure, H. Muntau, and B. Griepink. 1993. Improvement of analytical measurements within the BCR-programme: single and sequential extraction procedures applied to soil and sediment analysis. Intern. J. Envion. Anal. Chem. 51:129-134.
    連結:
  58. Ramos, L., L. M. Hernandez, and M. J. Gonzalez. 1994. Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park. J. Environ. Qual. 23:50-57.
    連結:
  59. Reddy, C. N. and W. H. Patrick, Jr. 1977. Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. J. Environ. Qual. 6: 259-262
    連結:
  60. Sahuquillo, A., J. F. López-Sánchez, R. Rubio, G. Rauret, R.P. Thomas, C.M. Davidson, and A.M. Ure. 1999. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal. Chim. Acta. 382:317-327.
    連結:
  61. Shu-Juan, S., X. Jian, D. Shu-Gui, and H. Xue. 2006. Influences of copper speciation on toxicity to microorganisms in soils. Biomed. Environ. Sci. 6: 409-13
    連結:
  62. Shuman, L. M. 1985. Fractionation method for soil microelements. Soil Sci. 140: 11-22.
    連結:
  63. Sposito, G. 1983. Foundations of surface complexation models of the oxide-aqueous solution interface. J. Colloid Interface Sci. 91:329–340.
    連結:
  64. Sposito, G., L. J. Jund, and A. C. Chang. 1982. Trace metal chemistry in acid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci. Soc. Am. J. 46:260-264.
    連結:
  65. Tack, F. M., O. W. J. J. Callewaert, and M. G. Verloo. 1996. Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation. Environ. Pollut. 91:199–208.
    連結:
  66. Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844-851.
    連結:
  67. Vidal, M., J. F. López-Sánchez, J. Sastre, G. Jiménez, T. Dagnac, R. Rubio, and G. Rauret. 1999. Prediction of the impact of the Aznalcóllar toxic spill on the trace element contamination of agricultural soils. Sci. Total Environ. 242: 131-148.
    連結:
  68. Xian, X. 1987. Chemical partitioning of cadmium, zinc, lead, and copper in soils near smelter. J. Environ. Sci. Health A. 22:527–541.
    連結:
  69. Xian, X. 1989. Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Wat. Air Soil Pollut. 45 :265-273.
    連結:
  70. Zausig, J., W. Stepniewski, and R. Horn. 1993. Oxygen concentration and redox potential gradients in different model soil aggregates at a range of low moisture tensions. Soil Sci. Soc. Am. J. 57:908-916.
    連結:
  71. 于天仁。1987。土壤化學原理。科學出版社。
  72. 王一雄、陳尊賢、李達源。1995。土壤污染學。國立空中大學。
  73. 王一雄。1997。土壤環境污染與農藥。明文書局。
  74. 王銀波、李國欽、陳尊賢。1988年。台灣土壤中重金屬資料庫與其含量分布,第一屆土壤污染防治研討會論文集。
  75. 朱海鵬、章莉菁、吳文娟。1992。台灣地區土壤重金屬含量現況之分析及探討。p.1-14。第三屆土壤污染防治研討會論文集。國立中興大學土壤環境科學系。
  76. 行政院環境保護署。1994。土壤中陽離子交換容量- 醋酸氨法(NIEA S201.60T)。
  77. 初建。1994。台灣數種污染土類土壤之重金屬型態及其釋放趨勢。國立中興大學土壤環境科學系碩士論文。
  78. 張尊國。1993。台北縣轄區土壤重金屬污染與農田灌溉系統關聯性之調查研究,台北縣環保局委託計畫報告。
  79. 張尊國。2002。台灣地區土壤污染現況與整治政策分析。國政分析。
  80. 陳尊賢,駱尚廉,吳先琪。1994。桃園鎘污染農業土壤之綜合性再分析與評估」,行政院科技顧問組委託研究計畫報告。
  81. 陳尊賢、陸瑩、黃東亮、吳芳娥。1992。台灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性。第三屆土壤污染防治研討會論文集。
  82. 陳靜生。1992。水環境化學。曉園出版社。
  83. 黃榮茂、王禹文、林聖富、楊德仁。1987。化學化工百科辭典。曉園出版社。
  84. 駱尚廉。1998。台灣的土壤污染專輯。科學月刊全文資料庫。
  85. 羅良慧。1997。應用地理資訊系統於土壤中鎘污染危害評估方法之研究。國立中興大學資源管理研究所碩士論文。
  86. 廖自基。1989。環境中微量重金屬元素的汙染危害與遷移轉化。科學出版社。
  87. Blaylock, M. J. and J. W. Huang. 2000. Phytoextraction of Metals. In: Raskin I, Ensley B(eds). Phytoremediation of Toxic Metals. Wiley, New York, NY, p53.
  88. Chaney, R. L. 1973. Crop and food chain effects toxic elements in sludges and effuents. In Recyling municrpal Slufges and Effluents on Land, Nat Assoc, St. univ. and Land-Grant coll. Washington, D. C. pp. 129-141.
  89. Gee, G. W. and J. W. Bauder. 1986. Partical-size analysis. p.383-412. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9.
  90. Gustafsson, J. P. 2004. Visual MINTEQ. version 2.30. Department of Land and Water Resources Engineering.
  91. Hoover, T. B. 1978. Inorganic species in water: ecological significance and analytical needs. EPA-600/3-78-064. Athens, Georgia.
  92. Lindsay, W. L. 1979. Chemical Equilibrian in Soils. Wiley-Interscience, New York.
  93. Loveland, P. J. and P. Digby. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solu¬tions: a comparison of some techniques. J Soil Sci 35:243-50.Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S.C. Brooks, and W. B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33:2939-2944.
  94. McBride, M. B. 1994. Environmental chemistry of soil. Oxford, New York. pp. 24: 63-121 .
  95. Patrick, W. H. Jr. and C. N. Reddy. 1978. Chemical changes in rice soils. In Soil and Rice. International Rice Research Institute, Los Banos, Philippines. pp 361-379.
  96. Rhoades, J. K. 1982. Cation exchange capacity. p.149-158. In: A.L. Page(ed.). Methods of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Agronomy Monograph 9.
  97. Sposito, G. 1989 . The chemistry of soil. Oxford University Press. New York.
  98. Thomas, G. W. 1996. Soil pH and soil acidity. Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA. p.475-490.
Times Cited
  1. 許哲瑜(2014)。整合模糊德爾菲法與模糊分析網絡程序法建構及評估河流景觀健康之研究。中興大學園藝學系所學位論文。2014。1-240。 
  2. 楊津銘(2013)。接種微生物於重金屬污染土壤對於重金屬移除之可行性評估。中興大學土壤環境科學系所學位論文。2013。1-85。 
  3. 伍珍曄(2012)。臺灣中部闊葉林溶解性重金屬的分佈。中興大學森林學系所學位論文。2012。1-57。 
  4. 陳世擇(2011)。研究蔗糖及無機養分添加對 復育重金屬污染土壤之影響。中興大學土壤環境科學系所學位論文。2011。1-90。 
  5. 許健輝(2010)。浸水環境下磷酸鹽及碳酸鹽對污染土壤鎘釋放及物種轉變之影響。中興大學土壤環境科學系所學位論文。2010。1-148。