Translated Titles

Synthesis and Modification of Styrene and Maleic anhydride copolymer





Key Words

苯乙烯和馬來酸酐共聚物 ; 苯乙烯和馬來酸酐共聚高分子 ; 咪唑 ; Styrene and Maleic anhydride copolymer ; SMA ; Imidazole



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在本研究中,以自由基的聚合法合成了不同組成的苯乙烯和馬來酸酐無規共聚物(SMA),進一步的碳十二胺、N-(3-丙基胺)-咪唑、1,6-己二胺和4,4-二胺基二苯醚等不同類型具有胺官能基單體將共聚物上酸酐官能基化。所得到的共聚物具有側鏈的醯胺酸基團(amide)連接並可形成亞醯胺化官能基(imide),其中之側鏈具有咪唑基團經由差式掃瞄熱分析儀中的研究可以作為環氧樹脂的潛伏觸媒。 利用不同比例的苯乙烯和馬來酸酐的無規共聚物在丁酮溶劑中進行反應,以80℃使用過氧化二苯甲醯作為自由基起始劑,反應後所得溶液,使用環己烷清洗未反應的苯乙烯單體及聚苯乙烯。可得到不同比例的苯乙烯和馬來酸酐共聚高分子其玻璃化轉移溫度遠高於聚苯乙烯,玻璃轉移溫度提高程度的隨著馬來酸酐官能基的重量百分比之增加而增加,最高可達到200℃(在50 wt%的馬來酸酐含量)。試驗中共聚物可與碳十二胺在80℃反應成苯乙烯-馬來亞醯胺並具有良好的產率(82-92%)。結果發現,在共聚物鏈中的側鏈碳十二亞醯胺形成大大提高他們的共聚物的熱穩定性,但因為的長側脂族基團增加而使的Tg輕微下降。 苯乙烯和馬來酸酐共聚物,在80℃下可與N-(3-丙基胺)-咪唑順利作用,形成的苯乙烯-馬來亞醯胺共聚物具有丙烯和在側鏈的咪唑基團之新衍生物。也降低了共聚物的Tg,並可作為用於固化環氧樹脂的潛伏觸媒。經由一系列的差式掃描熱分析儀分析中,發現苯乙烯和馬來亞醯胺-咪唑與雙酚A二環氧甘油醚(BPA-GDE)的混合物在室溫下可維持穩定狀態至少30天。然而,在混合物加熱後亦可啟動開環氧基之固化反應,且觸媒的起始反溫度和放熱量和在亞醯胺共聚物中的與咪唑量的濃度影響非常大。在50 wt%苯乙烯和馬來亞醯胺-咪唑摻入時為最有效的潛伏比例,最低可在87℃時起始環氧樹脂開環固化作用,並在150℃完成固化反應,最終達到550焦耳/克的放熱量形成完全熱固化。 在另組研究中苯乙烯和馬來酸酐共聚物在室溫下,用1,6-己二胺進行交聯反應。由於反應太快以致不能成膜進行後續物性測試,發現改選用4,4-二胺基二苯醚與共聚物交聯。固化之亞醯胺產物後經由DSC、DMA和TGA結果可以觀察出其共聚物的Tg和Td有明顯提升,在最高42.2 wt%的亞醯胺改質在DMA的觀察中可得到Tg為362.1℃的亞醯胺產物。 苯乙烯和馬來酸酐共聚物之熱性質亦可介入新的官能基,並有不同功能的苯乙烯和馬來酸酐共聚物新產品,若在此潛伏性固化研究的進一步探討,將可開發不同配方以改變混合添加量或起始固化溫度。

English Abstract

In this research, several random copolymers (SMA) consisting of styrene and maleic anhydride units in the polymer chains were synthesized via a free-radical process, and they were further functionalized at the anhydride group sites with the action of Dodecylamine、N-(3-Aminopropyl)-Imidazole、1,6-hexanediamine and 4,4-oxydianiline. The resulting copolymers possessing side-chained imidazole groups attached at the formed imide sites have been investigated as potential latent curing agents for epoxy resins. In the syntheses, random copolymers (SMA) with different ratios of styrene and maleic anhydride were first reacted in MEK solution at 80℃ using BPO as a free-radical initiator. The SMA copolymers were purified by removal of styrene monomer and polystyrene (PS) by cyclohexane solvent washings. The un-reacted maleic anhydride were removed by sublimation. The Glass Transition Temperatures(Tg) of the SMA copolymer are much higher than that of pure PS, and the degree of Tg enhancements appears to increase with increasing the percentage of maleic anhydride groups, reaching to 200℃ at 50 wt% of MA incorporation. The SMA could be converted into styrene-maleic imides (SMI-dodecyl) in good yields (82-92%) through treatment with dodecyl amines at 80℃. It was found that the imide formation in the copolymer chains greatly enhance their thermal stability of the copolymers but at the slight reduction in Tgs because of the dangling side aliphatic groups. The SMA copolymers were also functionalized by heating at 80℃ with N-(3-Aminopropyl)-Imidazole to form styrene-maleimide copolymers (SMI-imidzole) with propylene imidazole groups at the side chains. It was found that the attachment of imidazoles to SMA also lowers the Tgs of the copolymer SMI, but the imidazole groups on the SMI could serve as latent catalyst for curing of epoxy resins. Systematic DSC evaluations of imidazole functionalized SMI revealed that the mixing of SMI-imidazole with bisphenol A-diglycidylether (BPA-GDE) is stable at room temperature for at least 30 days. However, heat evolved when the mixtures were heated, and the initiation temperature and curing process seems very much influenced by the amount of imidazole concentrations in the copolymers. The SMI with 50% imidazole incorporation was found to be the most efficient latent catalyst, which has lowest starts curing epoxy temperature at 87 ℃ and completes the curing reaction at 150℃ with evolution of heat reaching 550 J/g shown in DSC measurements. We cured styrene and maleic anhydride copolymers by room temperature with 1,6-hexanediamine. It was too fast gelation that the film can not formation, however we use SAM copolymers cured with 4,4-oxydianiline. After cured the Tg and Td of copolymer was obviously increased from the DSC、DMA and TGA result. It was found Tg can highest to 362.1℃ at 42.2 wt%( DMA result) imide functionalized. The thermal properties of the copolymer of styrene and maleic anhydride copoltmer can also be involved in the new functional group, and of styrene and maleic anhydride copolymers of the different functions of the new products. Further research in this latent curing study could potentially result in developing interesting convenient one-component polymer formulations made by mixing SMI-imidazole/epoxy resins.

Topic Category 工學院 > 化學工程學系所
工程學 > 化學工業
  1. 3. Hasanzadeh, R., Najafi Moghadam, P., and Samadi, N. (2012). Polymers for Advanced Technologies 1–11.
  2. 16. Kim WG, Yoon HG, Lee JY. (2001). J Appl Polym Sci, 81, 5713-5722.
  3. 17. May CA. Epoxy resins. (1988). Chemistry and technology, 2nd ed., New York: Marcel Dekker.
  4. 18. Murai S, Nakano Y, Hayase S. (2001). J Appl Polym Sci, 80, 181-187.
  5. 20. Park S-J, Kim T-J, Lee J-R. (2000).J Polym Sci Part B Polym Phys, 38, 2114-2123.
  6. 21. Park S-J, Kang J-G, Kwon S-H. (2004). J Polym Sci Part B Polym Phys, 42, 3841-4022.
  7. 24. Barton JM, Shepherd PM. (1975). Makromol Chem, 176, 919-930.
  8. 1. Moore, E.R. (1986).Industrial & Engineering Chemistry Product Research and Development 25, 315–321.
  9. 2. Chrastova, V., Citovickỳ, P., Alexy, P., and Rosner, P. (1990). Acta Polymerica 41, 293–297.
  10. 4. Shulkin, A., and Stover, H.D.H. (2002). Journal of Membrane Science 209, 421–432.
  11. 5. Rong, Y., Chen, H.Z., Wei, D.C., Sun, J.Z., and Wang, M. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects 242, 17–20
  12. 6. Koning, C., Ikker, A., Borggreve, R., Leemans, L., and Moller, M. (1993). Polymer 34, 4410–4416.
  13. 7. Badulescu, R., Bolocan, I., and Vasilescu, D.S. (2008). Revue Roumaine De Chimie 53, 489–496.
  14. 8. Vanneste, M., and Groeninckx, G. (1995). Polymer 36, 4253–4261.
  15. 9. Wang, M., Zhu, X., Wang, S., and Zhang, L. (1999). Polymer 40, 7387–7396.
  16. 10. Deb, P.C., and G. Meyerhoff. (1985). Polymer 26, no. 4 , 629–635.
  17. 11. Zeng, W., and Y. (1989).Shirota. Macromolecules 22, no. 11, 4204–4208.
  18. 12. Barron, P. F., D. J. T. Hill, J. H. O’Donnell, and P. W. O’Sullivan. (1984).Macromolecules 17, no. 10, 1967–1972.
  19. 13. Brown, A., and K. Fujimori. (1986).Polymer Bulletin 16, no. 5, 441–444.
  20. 14. Sclavons, M., Franquinet, P., Carlier, V., Verfaillie, G., Fallais, I., Legras, R., Laurent, M., and Thyrion, F.C. (2000). Polymer 41, 1989–1999.
  21. 15. M. Sclavons, V. Carlier, B.De. Roover, P. Franquinet, J. Devaux, R. Legras. (1996).J Appl Polym Sci, 62, 1205–1210
  22. 19. Lin RH, Chen C-L, Kao L-H, Yang P-R. (2001).J Appl Polym Sci, 82, 3539-3551.
  23. 22. Kamon, T., and H. Furukawa. (1986). Epoxy Resins and Composites IV, 173–202.
  24. 23. Jisova, V. (1987). Journal of Applied Polymer Science 34, no. 7, 2547–2558.
  25. 25. Ricciardi, F., W. A. Romanchick, and M. M. Joullie. (1983). Journal of Polymer Science: Polymer Letters Edition 21, no. 8, 633–638.
  26. 26. Farkas, A., and P. F. (1968). Strohm. Journal of Applied Polymer Science 12, no. 1 , 159–168.