Translated Titles

The identification of 3 fungivorous nematodes and evaluating their potential as biological control agent





Key Words

取食偏好 ; 食真菌性線蟲 ; 鑑定 ; 萵苣幼苗猝倒病 ; 殘存 ; food preference ; fungivorous nematode ; identification ; lettuce damping-off disease ; survival



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

食真菌性線蟲廣泛存在世界各地,許多文獻皆報導其具有抑制土壤傳播性真菌病害的能力。為採集不同棲地之食真菌性線蟲,本實驗共採集中部地區90個不同地點的土壤樣品,分離並鑑定出Aphelenchus、Aphelenchoides、Paraphelenchus和Tylenchus 4屬食真菌性線蟲,其中以Aphelenchus出現頻率最高,90個採集點中出現53次。最後成功培養並鑑定至種的食真菌性線蟲分別為Aphelenchus avenae、Aphelenchoides composticola和Paraphelenchus acontioides。這三種線蟲最適生長溫度經測試分別為Aphelenchus avenae 32~36℃、Aphelenchoides composticola 24℃和Paraphelenchus acontioides 28℃。再以10種植物病原真菌、3種腐生性真菌和1種生物防治真菌來測試這三種食真菌性線蟲的取食偏好性,結果發現Aphelenchus avenae可取食最多種真菌,培養在5屬植物病原真菌Alternaria citri、Botrytis cinerea、Fusarium oxysporum、Rhizoctonia solani (AG4)、Sclerotinia sclerotiorum和商用品種Trichoderma sp.上族群數量可由50隻增量為400~800隻。經測試3屬食真菌性線蟲皆可在Rhizoctonia solani(AG4)上大量繁殖,故進一步測試它們防治盆缽中Rhizoctonia solani萵苣幼苗猝倒病的效果。結果顯示施用每2克土含20隻線蟲濃度的Aphelenchus avenae和Paraphelenchus acontioides,萵苣的植株存活率分別為88%和80%,施用每2克土2隻線蟲濃度的Aphelenchoides composticola,萵苣存活率可達為84%,三種食真菌性線蟲的處理組結果皆與單獨接種病原菌存活率4%的對照組有顯著差異。考慮商品化後保存問題,進行三種線蟲之殘存能力測試,結果顯示線蟲的殘存環境需要較低的水份約5%土壤含水量,及約16~20℃的低溫。三屬食真菌性線蟲中殘存能力最佳的為Aphelenchus avenae。本研究結果顯示Aphelenchus avenae之最適生長溫度與本土氣候條件吻合,且具備脫水乾燥的休眠機制優勢,加上此屬線蟲並無寄生植物的風險,應是三種線蟲中最具有發展為生物防製劑潛力的。為了避免線蟲在自然環境中取食不專一的問題,此食真菌性線蟲可在苗圃育苗穴盤或設施栽培中施用,讓線蟲在有限的空間裡針對特定的病原真菌發揮最佳的防治效果。

English Abstract

Fungivorous nematodes are distributed worldwide, and have been reported to suppress soil-born diseases caused by fungi pathogens. 90 soil samples were collected from the central Taiwan to isolate fungivorous nematodes from different habitats. Four fungivorous genus, Aphelenchus, Aphelenchoides, Paraphelenchus, and Tylenchus were identified. Aphelenchus spp. had the highest frequency and was found in 58.9% of the samples. Three fungivorous nematodes: Aphelenchus avenae, Aphelenchoides composticola, and Paraphelenchus acontioides were cultured successfully and identified to the species level. Incubating nematodes under 6 temperature ranging from 16℃ to 36℃ were conducted to evaluate the optimal growth temperature based on nematode reproduction rate. The optimal temperature for Aphelenchus avenae reproduction was 32~36℃, Aphelenchoides composticola was 24℃, and Paraphelenchus acontioides was 28℃. To evaluate the food preference of these 3 nematodes, ten plant pathogenic fungi, three saprophytic fungi, and one biological control Trichoderma sp. were used as the food source. The population of Aphelenchus avenae increased to 400~800 nematodes when cultured on pathogenic fungi Alternaria citri, Botrytis cinerea, Fusarium oxysporum, Rhizoctonia solani (AG4), and Sclerotinia sclerotiorum and the commercial bioagent Trichoderma sp.. All three nematodes had the largest population when cultured on Rhizoctonia solani (AG4), therefore, their ability to control the lettuce Rhizoctonia damping-off disease was evaluated under the greenhouse condition. Results showed all three fungivorous nematodes could suppress the disease. Plants in the pots which were treated with 20 Aphelenchus avenae per 2g soil or Paraphelenchus acontioides had 88% and 80% survival rates, respectively. Plants treated with 2 Aphelenchoides composticola per 2g soil had 84% survival rate. These results were significantly better than the 4% survival rate in the treatment that only inoculated with R. solani. To evaluate the potential of these nematodes being a biocontrol product, three fungivorous nematodes were tested for their survival ability under different temperatures and soil moisture content. Results show the best environmental condition for the nematodes to survive was about 5% soil moisture under 16~20℃. Results in this study suggest that Aphelenchus avenae had potential to develop into commercial products because of its suitability for local temperature, posting no threats to plants, and could be stored in anhydrobiosis condition. The fungivorous nematodes could be used in the seedling trays or under greenhouse condition to achieve the best controlling ability.

Topic Category 農業暨自然資源學院 > 植物病理學系所
生物農學 > 植物學
  1. 2. 林奕耀、蔡東纂。1984。台灣地區葡萄園中植物寄生性線蟲相之調查。中國園藝 30(3):173-179。
  2. 4. 林毓雯、郭鴻裕、劉滄棽。2010。外銷結球萵苣之合理化施肥。行政院農業委員會農業試驗所技術服務季刊 81:16-19。
  3. 7. 吳秀珍。2010。線蟲作為河川汙染生物指標之模式建立。國立中興大學第三十九屆博士論文。233 pp.。
  4. 8. 高德錚。1996。生菜萵苣知多少。臺中區農業專訊15:25-27。
  5. 9. 陳殿義、顏志恆、蔡東纂。2002。台灣地區冬季綠肥作物對水稻田根部寄生性線蟲存活之影響。中華農業研究 51(4):57-65。
  6. 10. 程永雄、杜金池。1974。應用微生物捕食性線蟲Aphelenchus avenae防治亞麻、黃麻腰折病之研究。中華農業研究。23(1):75-82。
  7. 11. 游培琪、蔡東纂。2004。山蘇花葉芽線蟲在台灣之發生。植物病理學會刊 13(1):35-44。
  8. 13. 劉興隆。1993。中部地區設施蔬菜之病害調查。臺中區農業改良場研究彙報 41: 1-9。
  9. 15. Ali, M. R., Amin, B., Adachi, T., and Ishibashi, N. 1999. Host and temperature preference, male occurrence and morphometrics of fungivorous nematode, Aphelenchus avenae isolates from Japan. Japanese journal of nematology 29 (1): 7-17.
  10. 17. Bae, Yeoung-Seuk and Knudsen, Guy R. 2001. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology 91(3): 301-306.
  11. 20. Couteaudier, Y., and Alabouvette, C. 1981. Fusarium wilt disease in soilless cultures. Acta Hortic. 126: 153-158.
  12. 21. Das, V. Manohar. 1960. Studies on the nematode parasites of plants in Hyderabad (Andhra Pradesh, India). Zeitschrift Fur Parasitenkunde 19: 553-605.
  13. 23. Favrin, R.J., Rahe, J.E. and Mauza, B. 1988. Pythium spp. Associated with crow root of cucumbers in British Columbia greenhouses. Plant disease 72: 683-687.
  14. 24. Franklin, Mary T. 1957. Aphelenchoides composticola n. sp. and A. saprophilus n. sp. from mushroom compost and rotting plant tissues.Nematologica 11: 306-313.
  15. 25. Freckman, D.W., Caswell E.P. 1985. The ecology of nematodes in agroecosystems. Annual Review of Phytopathology 23: 275-296.
  16. 26. Hasna, M. K., Insunza, V., Lagerlof, J., and Ramert, B. 2007. Food attraction and population growth of fungivorous nematodes with different fungi. Annals of applied Biology 151: 175-182.
  17. 27. Hofman, T.W. & s’Jacob, J. J. 1989. Distribution and dynamics of mycophagous and microvorous nematodes in potato fields and their relationship to some food sources. Annals of Applied Biology 115: 291-298.
  18. 30. Ishibashi, N. 2005. Potential of fungal-feeding nematodes for the control of soil-borne plant pathogens. Nematodes as biocontrol agents. 505pp.
  19. 31. Jun, Ok Kyoung and Kim, Young Ho. 2004. Aphelenchus avenae and antagonistic fungi as biological control agents of Pythium spp. The Plant Pathology Journal 20(4): 271-276.
  20. 33. Ko, W. H., and Hora, F. K. 1971. A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology 61: 707-710.
  21. 34. Kung, Shang-Ping, Gaugler, Randy, Kaya, Harry K. 1991. Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of invertebrate pathology 57: 242-249.
  22. 35. Mihuta-Grimm, L. and Rowe, R. C. 1986. Trichoderma spp. as biocontrol agents of Rhizoctonia solani damping-off of radish in organic soil and comparison of four delivery systems. Journal of Phytopathology 115: 204-213.
  23. 40. Ruess, Liliane, Zapata, Erick J. Garcia and Dighton, John. 2000. Food preferences of a fungal-feeding Aphelenchoides species. Nematology 2(2): 223-230.
  24. 41. Sanwal, K. C. 1961. A key to the species of the nematode genus Aphelenchoides Fischer, 1894. Canadian journal of zoology. 39: 143-148.
  25. 42. Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., and Spiegel, Y. 2001. Biological control of the root-knot nematode Meleidogyne javanica by Trichoderma harzianum. Phytopathology 91(7): 687-693.
  26. 44. Steinberger, T., Sarig, S. 1993. Response by soil nematode populations and the soil microbial biomass to a rain episode in the hot, dry Negev Desert. Biology and fertility of soils 16: 188-192.
  27. 47. Taylor, D. P. and Pillai, J. K. 1967. Paraphelenchus acontioides n. sp. (Nematoda: Paraphelenchidae), a mycophagous nematode from Illinois, with observations on its feeding habits and a key to the species of Paraphelenchus. Proceedings of the Helminthological Society of Washington 34(1): 51-54.
  28. 48. Townshend, J. L. 1964. Fungus host of Aphelenchus avenae Bastian, 1865 and Bursaphelenchus fungivorus Franklin & Hooper, 1962 and their attractiveness to these nematode species. Canadian journal of microbiology 10: 727-737.
  29. 49. U.S. Department of agriculture. Natural resources conservation service. Retrieved September 7 2011, from http://soils.usda.gov/education/resources/lessons/texture/
  30. 50. Walker, G. E. 1984. Ecology of the mycophagous nematode Aphelenchus avenae in wheat-field and pine-forest soil. Plant and Soil 78: 417-428.
  31. 1. 王心瑜。2003。土壤因素對非燻蒸性殺線蟲劑效果之影響。國立中興大學第三十二屆畢業碩士論文。76頁。
  32. 3. 林煥章。2009。結球萵苣產銷概況與輔導措施執行情形。農政與農情 204。
  33. 5. 邱怡詮、林棟樑。2000。蔬菜合理化施肥技術-萵苣。合理化施肥推廣手冊。P.14-49
  34. 6. 吳文希。1988。植物土媒病原學(立枯絲核菌之性質及防治)。國立編譯館。259頁。
  35. 12. 黃惠琳、王美欣 編。2005。93年業務年報-園藝作物改良蔬菜篇。行政院農業委員會台南區農業改良場。102 pp.
  36. 14. 顏志恆、李明達、陳殿義、林俊義、蔡東纂。1998。土壤植物寄生性線蟲分離方法之優劣比較。植物保護學會會刊 40:153-162。
  37. 16. Abebe, Eyualem, Andrassy, I., Traunspurger, W. 2006. Fresh water nematodes ecology and taxonomy. CAB Publishing, Wallingford, Oxfordshire, UK. 752 pp.
  38. 18. Barker, K. R. 1963. Parasitism of tobacco callus and Kentucky bluegrass by Aphelenchus avenae. Phytopathology 53: 870.
  39. 19. Barker, K.P. 1964. On the disease reduction and production of the nematode Aphelenchus avenae on isolates of Rhizoctonia solani. Plant disease reporter 48: 428-432.
  40. 22. Faulkner, L. R., and Darling, H. M. 1961. Pathological histology, hosts and culture of the potato root nematode. Phytopathology. 51: 778-786.
  41. 28. Hunt, D. J. 1993. Aphelenchida, Longidoridae and Trichodoridae: Their systematic and Bionomics. CABI Publishing, oxon, UK. 352 pp.
  42. 29. Ishibashi, N. and Choi, D. R. 1991. Biological control of soil pests by mixed application of entomopathogenic and fungivorous nematodes. Journal of nematology 23(2): 175-181.
  43. 32. Klink, J.W. and Barker, K.R. 1968. Effect of Aphelenchus avenae on the survival and pathogenic activity of root-rotting fungi. Phytopathology 58: 228-232.
  44. 36. Naeem, S. A. 1967. Some studies on the biology and taxonomy of the genus Paraphelenchus. Thesis for Diploma of imperial college, Lodon, 104 pp.
  45. 37. Okada H., Ferris H. 2001. Effect of temperature on growth and nitrogen mineralization of fungal-feeding nematodes. Plant and soil 234: 253-262.
  46. 38. Otsubo, R., Yoshica, T., Kondo, E., and Ishibashi, N. 2006. Coiling is not essential to Anhydrobiosis by Aphelenchus avenae on agar amended with sucrose. Journal of nematology 38(1): 41-45.
  47. 39. Rhoades, H. L. & Linford, M. B. 1959. Control of Pythium root rot by the nematode Aphelenchus avenae. Plant Disease Report 43: 323-328.
  48. 43. Siddiqi, M. R. 2000. Tylenchida, Parasites of plants and insects, 2nd ed. CABI Publishing, Wallingford, Oxon, UK. 833 pp.
  49. 45. Steinger, G. 1936. The status of the nematode Aphelenchus avenae Bastian, 1865, as a plant parasite. Phytopathology 26:294-295.
  50. 46. Tan, Kim H. 1995. Soil sampling, preparation, and analysis. MARCEL DEKKER, New York, USA. 408 pp.
  51. 51. Wharton, D. A. 2002. Nematode survival strategies. Pp. 389-411 in Lee, D. L., [ed.], The biology of nematodes. Taylor & Francis, New York, USA. 635 pp.
  52. 52. Yeates, G. W., Bomgers, T., De Goede, R. G. M., Freckman, D. W., and Georgieva S. S. 1993. Feeding Habits in Soil Nematode Families and Genera-An Outline for Soil Ecologists. Journal of Nematology 25(3): 315-331.