Title

堰塞壩溢頂潰決試驗之潰口發展及流場特性分析

Translated Titles

The Flow Field Characteristics and the Dam Notch Development in Field Overtopping Breach Experiment

Authors

陳佩儀

Key Words

堰塞壩 ; 溢頂 ; 潰決 ; 原尺寸試驗 ; 影像分析 ; PTV ; Landslide dam ; Overtopping ; breach ; large scale experiment ; Image processing ; PTV

PublicationName

中興大學水土保持學系所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

陳樹群

Content Language

繁體中文

Chinese Abstract

極端降雨事件易引致大規模崩塌與土石流事件發生,大量的土砂容易堵塞河道而形成堰塞湖,堰塞壩潰決後所釋放的洪水不僅危害下游地區居民之生命及財產安全,更顯著地改變下游河道特性,因此了解堰塞壩潰決基本特性,成為土砂災害治理工作的重要課題。 本研究使用現地堰塞壩潰決實驗,配合影像分析方法進行流場分析,將潰決歷程依照水流階梯式侵蝕現象前後區分為兩個階段。發現壩體上不同斷面位置的流速分佈具有相似性,並逐漸向上游遞移。受到水面梯度影響,上游斷面流速趨勢較下游斷面平緩。潰決歷程的兩階段中皆會發生溯源現象,溯源發展處水流寬度受側向崩塌土方影響而束縮、受高差因素影響流速增快,通洪斷面小;壩體溯源完成後因流速進入穩定,潰口發展完整,出現較大通洪斷面積,出流量快速上升。觀察整體潰決歷程,發現流速與流量變化趨勢成負相關,因此得知堰塞壩潰決過程流量變化由通洪斷面積主導。 本研究對於潰決歷程及流速在空間及時間上進行深入探討,於堰塞壩潰決流速及通洪斷面特性的分析上有相當進展,期盼未來能提供相關研究者進行參考。並對於通洪斷面形狀及水深進行初步討論,提供往後研究進行改進。

English Abstract

Extreme rainfall events induce landslides and debris flows and large amounts of sediment could block river channels and form dam lakes. Floods release after dam breach cause serious disasters and change channel forms for downstream areas. Therefore, understanding the basic characteristics of the dam breach is a key issue for disaster mitigation. In this study, we used the large scale dam breach experiments and the flow fields are analyzed using an image processing method. Breach process is divided into two stages according to the phenomenon of step erosion. It has been found that the different dam sections have similar velocity distributions and these velocity distributions gradually move toward the upstream. Influenced by the water surface gradient, the flow velocity of the upstream section is gentler than downstream section. The headwater erosion phenomenon occurs in the two stages during the breach. The width of water surface is affected by the collapse of the earth, and the flow velocity and the flooding area. After the completion of headwater erosion in Stage2, velocity state became stable, the development of notch was completed, and a large flood-crossing area was appeared, and the discharge was raised rapidly. Observing the overall process during the breach, it has been found that the velocity is negatively correlated with the trend of discharge. Therefore, the flow change during the breach is dominated by the flooding area. This study explores the process of breach and velocity in spatiality and temporality. There has been important progress in the analysis of the velocity profiles and the characteristics of the flood-cross section. It is expected that relevant researchers will be provided for reference in the future. A preliminary discussion on the shape and depth of the flood cross section is provided, and future research is provided for improvement.

Topic Category 農業暨自然資源學院 > 水土保持學系所
生物農學 > 生物環境與多樣性
Reference
  1. 1. 高橋保、匡尚富 (1988),「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31號,B-2,1988。
  2. 2. 陳樹群 (1999),「堰塞湖潰決機制與減災工法研究」,中華水土保持學報,30(4),pp. 299-311
  3. 3. 聶高眾、高建國、鄧硯 (2004),「地震誘發的堰塞湖初步研究」,第四紀研究,24(3):pp. 293~301。
  4. 4. 倪瑋傑 (2005),「地形持續發展的溝渠與地下水湧出及補注」,國立台灣大學土木工程學系,碩士論文。
  5. 5. 林琮文 (2011),「堰塞壩潰決型態對下游河床變化影響之探討」,國立中興大學水土保持學系,碩士論文。
  6. 6. 陳樹群、安軒霈、徐子陽、王強 (2015),惠蓀林場蘭島溪高精度可調流量土砂試驗站,中華水土保持學報,46(1),pp. 001-006。
  7. 7. 簡依亮 (2016),「蘭島溪堰塞壩潰決特性分析」,國立中興大學水土保持學系,碩士論文。
  8. 8. 蘇愷軒 (2017),「以三維影像座標投影技術分析堰塞壩潰決特性」,國立中興大學水土保持學系,碩士論文。
  9. 9. 田畑茂清、水山高久、井上公夫,(2002),天然ダムと災害,古今書院.
  10. 10. Ashida, K., Takahashi, T., and Sawada, T., (1976), “Sediment Yield and Transport on a Mountainous Small Watershed,” Bull. Disas. Prev. Res. Inst., Kyoto Univ., 26(240), Part 3, Sept.
  11. 11. Aleixo, R., Spinewine, B., Soares-Frazao, S., and Zech, Y. (2009), "Non-intrusive measurements of water surface and velocity profiles in dam break Flow." Proceedings of the 33rd IAHR Congress, Vancouver, B.C., pp. 6898e6905.
  12. 12. Al-Riffai, Mahmoud, (2014), “Experimental study of breach mechanics in overtopped noncohesive earthen embankments.”, Univ. of Ottawa.
  13. 13. Bento, A. M., et al., (2017), “Direct Estimate of the Breach Hydrograph of an Overtopped Earth Dam. ” Journal of Hydraulic Engineering 143(6).
  14. 14. Costa, J. E. and Schuster, R. L., (1988). “The Formation and Failure of Natural Dams.” Geological Society of America Bulletin, 100, pp. 1054-1068.
  15. 15. Chinnarasri, C., Jirakitlerd, S., and Wongwises, S., (2004). “Embankment dam breach and its outflow characteristics.” Civil Engineering and Environmental Systems, 21(4), pp. 247-264.
  16. 16. Capart, H., (2013). “Analytical solutions for gradual dam breaching and downstream river flooding.” Water Resources Research, 49, 1968-1987, doi:10.1002/wrcr.20167.
  17. 17. Fread, D.L. (1984). “DAMBRK:The NWS Dam-Break Flood Forecasting Model, Silver Spring, Maryland. ”, National Weather Service, Office of Hydrology.
  18. 18. Fread, D. L. (1988). “The NWS DAMBRK model: Theoretical background/user documentation.” HRL-258, Hydrologic Research Laboratory Report, National Weather Service, Silver Spring, Md.
  19. 19. Hanson, G. J., et al., (2011), “Development and Characterization of Soil Material Parameters for Embankment Breach. ” Applied Engineering in Agriculture 27(4):587-595.
  20. 20. Macchione, F. (1989). “Discussion on ‘Dimensionless analytical solutions for dam breach erosion by V. P. Singh, and C. A. Quiroga.” J. Hydraul. Res., 27(3), 447–452.
  21. 21. Mohamed, M. A. A., Samuels, P. G., Morris, M. W., and Ghataora, G. S. (2002). “Improving the accuracy of prediction of breach formation through embankment dams and flood embankments.” River Flow 2002, Proc., Int. Conf. on Fluvial Hydraulics, Vol. 1, D. Bousmar and Y. Zech, eds., Balkema, Lisse, The Netherlands.
  22. 22. Nezu, I., Nakayama, T., (1997), “Space-time correlation structures of horizontalCoherent vortices in compound open-channel flows by using particle tracking velocimetry. ”. Journal of Hydraulic Research 35 (2).
  23. 23. Niu, Z. P., Xu, W. L., Li, N. W., Yang, X. U. E., and Chen, H. Y.. (2012). “Experimental investigation of the failure of cascade landslide dams.” Journal of Hydrodynamics, Ser. B, 24(3), pp. 430-441.
  24. 24. Orendorff, B., et al., (2013), “Breach outflow characteristics of non-cohesive embankment dams subject to blast. ” Canadian Journal of Civil Engineering 40(3):243-253
  25. 25. Singh, K. P., and Snorrason, A, (1984). “Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models.” J. Hydrol., 68, 295–310.
  26. 26. Schuster, R. L. and Costa J. E, (1986). “A Perspective on Landslide Dams,” Landslide Dams, Processes, Risk and Mitigation, pp.1-20.
  27. 27. Singh, V. P., (1996). “Dam breach modeling technology”, Kluwer Academic, Norwell, Mass.
  28. 28. Sakoray-Varga, B., Kramer, T., and Jozsa, J. (2009). “PTV and numerical flow modelling in reconstructing velocity fields of laboratory dam break flows. ” Proceedings of the 33rd IAHR Congress, Vancouver, B.C., pp. 6906e6913.
  29. 29. Umeyama, M., (2010), “Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current. ” ournal of Waterway, Port, Coastal, and Ocean Engineering.
  30. 30. Wahl, T. L, (1998). “Prediction of embankment dam breach parameters: A literature review and needs assessment.” Dam Safety Rep. No. DSO-98-004, Bureau of Reclamation, U.S. Dept. of the Interior, Denver.
  31. 31. Wahl, T.L. (2004), “Uncertainty of predictions of embankment dam breach parameters,” Journal of Hydraulic Engineering, 130(5), 389-397.
  32. 32. Wu, W., Mustafa, S. A., Scott, F. B., Qin, J. Chen, Serban, G. C., Jennifer, G. D., Michael, G. D., Blair, G., Greg, H., He, Z., Pal, H., Thomas, V. H., David, H., Steven, A. H., Jasim, I., Jia, Y., Jeffrey, D. J., Renè, K., Cassie, C. K., Lai, Y., Eddy, J. L., Liu, S., Fekadu, M., Mark, M., Hervè, M., Bryan, O., Jay, P., Patrik, P., Seann, R., Brett, F. S., Steve, H. S., David, T. S., James, S., Martin, J. T., Ryota, T., Tony, L. W., David, M. W., David, T. W., Yves, Z., and Zhang, L., (2011), “Earthen embankmentChinnarasri breaching.” Journal of Hydraulic Engineering, 137(12), pp.1549–1564.
  33. 33. Walder, J. S., Iverson, R. M., Godt, J. W., Logan, M., and Solovitz, S. A., (2015). “Controls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen dams.” Water Resources Research, 51, doi:10.1002/ 2014WR016620.