Title

加速碳酸化對轉爐石中含鈣物種轉化反應之影響

Translated Titles

The effect of accelerated carbonation on the calcium species transformation of BOF slag

Authors

江志華

Key Words

轉爐石 ; 加速碳酸化 ; 化學特性 ; 礦物相 ; 顯微結構 ; 重金屬 ; 溶出特性 ; BOF slag ; accelerated carbonation ; chemical property ; mineral morphology ; microstructure ; heavy metal ; leachability

PublicationName

臺北科技大學資源工程研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

柯明賢

Content Language

繁體中文

Chinese Abstract

本研究以三種粒徑(3.5~7mm、7~15mm及15~25mm)之轉爐石於不同反應溫度、二氧化碳含率、水氣含率及反應時間等操作參數下進行加速碳酸化之研究,探討加速碳酸化對轉爐石特性之影響,以評析轉爐石加速碳酸化之可行性、最適操作參數及反應行為。由研究結果可以發現,轉爐石之主要化學組成為Ca、Fe、Mg、Si、Al等氧化物,其中以鈣的成分居多且亦存在f-CaO約3.94 %~6.28 %,顯示轉爐石應具有碳酸化之潛勢。而轉爐石加速碳酸化於最適操作條件(200℃、40%CO2及60%H2O)下進行加速碳酸化,三種粒徑之轉爐石其pH值分別從12.3、12.0及11.9下降至10.8、10.5及10.4,三種粒徑之轉爐石其熱重損失則分別從1.28 %、1.09 %及0.79 %增加至1.72 %、1.38 %及1.57 %。由OM礦物相及SEM顯微結構的觀察中則發現轉爐石表層應有碳酸鈣成份礦物的生成,而由XRD晶相繞射及FTIR光譜則分別亦可以發現轉爐石經加速碳酸化後表層有Caclite晶相及碳酸根特性吸收峰存在。 而由不同反應時間進行轉爐石加速碳酸化之研究結果可以發現,轉爐石表層之碳酸鈣晶粒大小及碳酸化厚度隨著反應時間增加而增加,且表層碳酸鈣之礦物結構則隨著反應時間由針織結構的霰石轉化為立方體結構的方解石。由XRD繞射分析結果可以發現,轉爐石表層中Calcite晶相繞射峰強度隨著反應時間增加而增加,但Portlandite與Lime的晶相繞射峰強度則隨著反應時間增加而減少。由FTIR圖譜中可以發現,轉爐石於不論經3、5、24小時加速碳酸化後其表層均存在有碳酸根的特性吸收峰,但Si-O的特性吸收峰則由943 cm-1及983 cm-1往高波數移動。由f-CaO與Ca2SiO4的化學組成分析及熱重分析結果可以發現,加速碳酸化之轉爐石表層所形成的碳酸鈣主要應來自其所含f-CaO及Ca2SiO4之鈣系物種的轉化。 另外,由毒性溶出特性試驗得知加速碳酸化後轉爐石之重金屬Cu、Cr、Pb、Ni及Zn均有明顯下降的趨勢,而由桶槽溶出試驗得知加速碳酸化後轉爐石之重金屬Cr、Pb及Ni之溶出量亦均有明顯下降趨勢。綜合以上研究結果顯示,轉爐石表層之氧化鈣及矽酸鈣於加速碳酸化過程中,應會先行發生水化反應形成Ca(OH)2及CSH膠體 ,而Ca(OH)2及CSH膠體再以液相碳酸化反應形成碳酸鈣,直到碳酸鈣佈滿轉爐石表層之孔隙,碳酸化反應即趨於平衡。而轉爐石進行加速碳酸化於其表層所形成之碳酸鈣,具有降低轉爐石高鹼性及穩定重金屬之功效,可提昇轉爐石資源化利用之價值,並兼具二氧化碳減量之效果。

English Abstract

In this study, the effects of accelerated carbonation on the chemical properties, mineral morphologies and microstructures of BOF slag under various accelerated carbonation parameters are evaluated. Under optimum accelerated carbonation parameters, the results indicate that particle size 3.5 to 7mm, 7 to 15mm and 15 to 25mm of BOF slags individually lowered their pH values from 12.3, 12.0 and 11.9 to 10.8, 10.5 and 10.4. Besides, thermal weight loss of BOF slags for particle size 3.5 to 7mm, 7 to 15mm and 15 to 25mm individually increased from 1.28 %, 1.09 % and 0.79 % to 1.72%, 1.38% and 1.57%. The mineral morpgology micrographs and SEM micrographs of accelerated carbonation BOF slags show that the surface of BOF slag was feasible to form calcium carbonate. The XRD patterns of accelerated carbonation BOF slags show that there were calcite on the surface of BOF slag and the spectra of FTIR of accelerated carbonation BOF slags indicate that there were CO32- function groups presenting on surface of carbonated accelerated carbonation BOF slags. Based on the investigation of chemical properties, mineral morphologies and microstructures of accelerated carbonation BOF slags on different reaction time, the results show that the grain size and thickness of calcium carbonate and the diffraction peak intensity of calcite on accelerated carbonation BOF slag surface increase with the reaction time. The calcium carbonate of BOF slag surface was formed by the reaction of Ca(OH)2 and CHS gels produced from the hydration of the f-CaO and Ca2SiO4 with carbon dioxide through aqueous carbonation. Furthermore, the results in accordance with TCLP and Tank Leaching tests indicate that the leaching concentration of Cu, Cr, Pb,Ni and Zn in accelerated carbonation BOF slag was obviously decreased. Based on the above results, accelerated carbonation of BOF slag not only reduces high alkalinity of BOF slag and leachability of heavy metals in BOF slag, but also promotes the utilization of BOF slag and reaches the reduction of carbon dioxide.

Topic Category 工程學院 > 資源工程研究所
工程學 > 工程學總論
Reference
  1. [6] Ahn J. S., Chon C. M., Moon H. S., & Kim K. W., "Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems," Water Research, vol 37. pp. 2478-2488.
    連結:
  2. [7] Li Y. S., Chiou C. S., & Shieh Y. S., "Adsorption of acid black wastewater by basic oxygen furnace slag," Bulletin of Environmental Contamination and Toxicology, vol. 64, pp. 659-665.
    連結:
  3. [8] Xue Y., Wu S., Hou H., & Zha J., "Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture," Journal of Hazardous Materials, vol. 138, pp. 261-268.
    連結:
  4. [11] Geiseler J., "Use of steelworks slag in Europe, " Waste Management, Vol. 16, Nos 1-3, 1996, pp. 59-63.
    連結:
  5. [12] Radu Barna, Hae-Ryong Bae, Jacques Mĕhu, Hans van der Sloot, Pierre Moszkowicz, Christian Desnoyers "Assessment of chemical sensitivity of Waelz slag, " Waste Management, vol. 20, 2000, pp. 115-124.
    連結:
  6. [15] "Iron and BOF slag End-Use Statistic," U.S. Geological Survey, 2005.
    連結:
  7. [16] Metz B, et al., "IPCC special report on carbon dioxide capture and strage,".
    連結:
  8. [17] Lackner K.S., Wendt C. H., Butt D. P., Joyce E. L., and Sharp D. H., "Carbon dioxide disposal in carbonate minerals," Energy, 1995, 20 (11), pp.1153-1170.
    連結:
  9. [18] Lackner K.S., "A guide to CO2 sequestration," Science, 300 (5626), 2003, pp. 1677–1678.
    連結:
  10. [19] Morris D. R., Szargut J., "Standard chermical exergy of some elements and compounds on the planet earth," Energy, 11 (8), 1986, pp. 733-755.
    連結:
  11. [20] David R., Lide E., CRC handbook of chemistry and physics, Taylor and Francis, BocaRaton, FL, 2007.
    連結:
  12. [21] Lackner K. S., Butt D. P., Wendt C. H., "Progress on binding CO2 in mineral substrates, " Energy Conversion and Management, vol. 38, 1997, pp. 259-264.
    連結:
  13. [23] Eva Rendek, Gaelle Ducom, Patrick Germain, "Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash," Hazardous Materials, vol. B128, 2006, pp.73-79.
    連結:
  14. [25] Jia Sun, Marta Ferna´ndez Bertos and Stefaan J. R. Simons, "Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2," Energy & Environmental Science, vol. 1, 2008, pp. 370 – 377.
    連結:
  15. [26] Fernández Bertos M., Li X., Simons S. J. R., Hillsb C. D., and Carey P. J., "Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2," The Royal Society of Chemistry, 2004, pp. 428-436.
    連結:
  16. [27] Chimoenos J. M., Fernandez A. I., Nadal R., Wspiell F., "Short-term nature weathering of MSWI bottom ash," Journal of Hazardous Material, B79, 2000, pp. 287-299.
    連結:
  17. [29] Wiles C.C., "Municipal Solid Waste Combustion Ash:State-of-the-knowledge," Journal of Hazardous Materials, Vol.41, 1996, pp. 325-344.
    連結:
  18. [30] Vehlow J., "Municipal solid waste management in Germany," Waste Management, B16, 1996, pp. 367-374.
    連結:
  19. [31] Meima J. A., Zomeren A. V., and Comans R. J., "Complexation of Cu with dissolved organic carbon in Municipal Solid Waste Incinerator Bottom ash leachates," Environment Science Techonlogy, Vol. 33, 1999, pp. 1424-1429.
    連結:
  20. [32] Chimenos J. M., Fernandez A. I., Miralles L., Segarra M. , Espiell F., "Short-term natural weathering of MSWI bottom ash as a function of particle size," Waste Management, 2003, pp. 887-895.
    連結:
  21. [33] Chimenos J. M., Fernandez. A. I., L. Miralles, J. R. Rosell, A. Navarro Ezquerra., "Change of mechanical properties during short-term natural weathering of MSWI bottom ash” Environmental.Sci. technol. 39, 2005, pp. 7725-7730.
    連結:
  22. [34] Freyssinet Ph., Piantone P., Azaroual M., Itard Y., Clozel-Leloup B., Guyonnet D., Baubron J.C., "Chemical changes and leachatemass balance of municipal solid waste bottom ash submitted to weathering," Waste Management 22, 2002, pp. 159–172.
    連結:
  23. [35] Polettini A., Pomi R., Trinci L., Muntoni A., Lo Mastro S., "Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives," Chemosphere. 56, 2004, pp. 901–910.
    連結:
  24. [36] Meima J.A., Comans R.N.J., "Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum," Appl. Geochem. 17, 2002, pp. 1503–1513.
    連結:
  25. [37] Van Gerven T., Van Keer E., Arickx S., Jaspers M., Wauters G., Vandecasteele C., "Carbonation of MSEI-bottom ash to decrease heavy metal leaching in view of recycling," Waste Management, 2005, vol. 25, pp. 291-300.
    連結:
  26. [39] Arick S., Van Gerven T., Vandecasteele C., "Accelerated carbonation for treatment of MSWI bottom ash," Hazardous Materials, vol. B137, 2006, pp. 235-243.
    連結:
  27. [40] Quanyuan Chen, Johnson D. C., Lingyun Zhu, Menghong Yuan, and Hills C. D., "Accelerated carbonation and leaching behavior of the slag from iron and steel making industry," Journal of University of Science and Technology, vol. 14, B4, 2007, pp. 297-301.
    連結:
  28. [42] 詹詠翔,「養生條件對轉爐石溶出行為之影響」,國立成功大學環境工程學系,碩士論文,2009。
    連結:
  29. [43] Puertas F., Palacios M., Vazquez T., "Carbonation process of alkali-activated slag mortars," J Mater SCI, vol. 41, 2006, pp. 3071-3082.
    連結:
  30. [44] 張高僑,「鈣系爐渣封存二氧化碳行為之研究」,國立成功大學環境工程學系,碩士論文,2008。
    連結:
  31. [45] Nikulshina V., Galvez M. E., Steinfeld A., "Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle," Chemical Engineering Journal, vol. 129, 2007, pp.75-83.
    連結:
  32. [46] Goto S., Suenaga K., Kado T., Fukuhara M., "Calcium silicate carbonation products," Journal of the American Ceramic Society, vol. 78, 1995, pp. 2867-2872.
    連結:
  33. [1] 爐石利用推廣手冊,中鋼集團, 2005。
  34. [2] 楊貫一,爐石資源化-中鋼公司盧石應用的過去與未來,技術與訓練,第17卷,第一期,1992,第31~46頁。
  35. [3] 黃兆龍,混凝土性質與行為,詹式書局,1984。
  36. [4] 石大鑫,冶金渣的綜合利用,礦業技術,中國大陸四川,1992。
  37. [5] 林平全、張東源、林志棟、葉銘欽、蔡宗哲,轉爐石於鋪面工程之應用,中國土木水利工程學刊,第三十三卷,第三期,2006,第103~115頁。
  38. [9] 林志棟、王盈傑、廖溪,轉爐石取代碎石級配料於瀝青混凝土之特性比較研究,1999。
  39. [10] 柯明賢、呂雅湘、吳孟樺、林昌琰、吳秉輯,鋼鐵工業爐渣作為填築材料之工程特性與環境特性研究,成功大學資源再生及管理研究中心,2002。
  40. [13] Legal Status of Slags Position Paper, "The European Slag Association, " 2006.
  41. [14] Report des Forschungsinstitut der Forschungsgemeinschaft Eisenhüttenschlacken, Dr.-Ing. Th. Merkel , 2002.
  42. [22] Conner W. K., Dahlin D. C., Nilsen D. N., Walters R. P., Turner P. C., "Carbon dioxide sequestration by direct mineral carbonation with carbonic acid," Proceedings of the 25th International Technical Conference on Coal Utilization and Fuel Systems. Clearwater, Florida, 2000.
  43. [24] Wouter J. J. Huijgen, Geert-Jan witkamp, and Rob N. J. comans, "Mineral CO2 sequestration by BOF slag Carbonation," Environmental Science & Technology, vol. 39, 2005, pp. 9676-9682.
  44. [28] 鄭益明、謝和霖,「台灣的灰渣處理與後續問題」,台日環境論壇專刊,第49-55頁,2004。
  45. [38] Shimaoka T., Shogo S., "Pretreatment of bottom ash for reuse of construction materials," 2000.
  46. [41] Derek C. Johnson, "Accelerated carbonation of stainless steel slag,".
Times Cited
  1. 詹鈞詠(2014)。加速碳酸化轉爐石工程特性及鋪面材料應用之研究。成功大學資源工程學系學位論文。2014。1-102。 
  2. 魏至洵(2014)。脫硫石膏應用於產製煉鋼爐石水合磚之研究。臺北科技大學資源工程研究所學位論文。2014。1-104。 
  3. 劉秉軍(2011)。轉爐石取代混凝土中天然細骨材之研究。臺北科技大學資源工程研究所學位論文。2011。1-98。 
  4. 林佩瑩(2011)。加速碳酸化對焚化底渣特性影響之研究。臺北科技大學資源工程研究所學位論文。2011。1-116。