Title

台北捷運文湖線於高架橋段之振動特徵評估

Translated Titles

Evaluation of Vibration Characteristics for Taipei WenHu MRT Line on Viaduct

DOI

10.6840/CYCU.2014.00348

Authors

陳冠全

Key Words

台北捷運文湖線、高速鐵路、橋樑結構、頻率、衰減係數、影響距離 ; attenuation coefficient ; frequency ; viaduct ; high-speed trains ; Taipei WenHu MRT line ; influence distance

PublicationName

中原大學土木工程研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

陳逸駿

Content Language

繁體中文

Chinese Abstract

本研究採用前人於台北捷運文湖線之振動量測資料,進一步分析捷運行駛引致之地盤振動特徵。文湖線之結構由橋樑設有深基礎組成,而土層形式主要為沖積土層。本研究針對低-中-高頻率帶與21個各別頻率之分析結果進行討論,以瞭解衰減係數及影響距離與土層、距離、頻率之相互關係。 分析結果顯示21個各別頻率之衰減係數介於0.001至0.0175 (1/m)之間。與剪力波速之關係呈現剪力波速越大衰減係數越小之趨勢,與頻率之間的關係則呈現頻率越高衰減係數越高的趨勢。 在影響距離方面,整體振動量之影響距離約在74 m與113 m之間,低頻率帶影響之影響距離為95 m至273 m之間,中頻率帶之影響距離介於116 m至274 m之間,而高頻率帶之影響距離介於45 m至75 m之間。主要影響距離之控制頻率為低頻率帶以及中頻率帶,高頻率帶帶之影響距離則較短。 在21個各別頻率分析中,影響距離介於100 m與750 m之間,呈現剪力波速越高影響距離越短之趨勢。分析5個測點各班次列車之影響距離,主要影響距離之控制頻率分別為8、10、10、20、20 (Hz),頻率集中於低頻率帶及中頻率帶。 台北捷運與高速鐵路之分析結果比較顯示,捷運之衰減係數大於高鐵之衰減係數,捷運之影響距離小於高鐵之影響距離。主要原因可能為車身長度、車體重量、車速等因素,造成能量傳遞之快慢及遠近。

English Abstract

This study used the previous measurement data to further analyze the ground vibration characteristics for Taipei WenHu MRT line. The main structure type for Taipei WenHu MRT line is viaduct with deep foundation, and the soil type is alluvial deposit. This study focused on the analysis of various frequency types, including low frequency range, middle frequency range, high frequency range, overall frequency range, and 21 individual frequencies, to observe the relationships between the attenuation coefficient or influence distance and soil type, measurement distance, and frequency. The attenuation coefficient for 21 individual frequencies ranges from 0.001 to 0.0175 (1/m). The results show that the higher of ground shear wave velocity, the lower of attenuation coefficient is. Meanwhile, the attenuation coefficient increases while the frequency is higher. For the analysis of influence distance, the influence distances of overall, low, middle and high frequency ranges are 74-113 m, 95-273 m, 116-274 m, and 45-75 m, respectively. The main frequency with larger influence distance happens at low and middle frequency ranges. However, the influence distance in the high frequency range is shorter. The influence distances for 21 individual frequencies are between 100 and 750 m. Furthermore, the influence distance reduces with increasing ground shear wave velocity. Based on these analyses of 5 measurement sites, the main controlled frequency of influence distance is 8, 10, 10, 20, 20 Hz for each site. These controlled frequencies mainly happen at low and middle frequencies. Comparing the Taipei MRT and Taiwan high-speed trains, analysis results show that the attenuation coefficient of MRT is higher than that of high-speed trains and the influence distance of MRT is smaller than that of high-speed trains. The reasons may be attributed to the difference of rail length, rail weight and train speed, etc.

Topic Category 工學院 > 土木工程研究所
工程學 > 土木與建築工程
Reference
  1. 4. 揚智幃,「捷運列車引致土層振動與衰減特性之研究」,碩士論文,國立成功大學,2002。
    連結:
  2. 6. 曾祥岳,「捷運列車引致振動之衰減模式之分析」,碩士論文,國立成功大學,2003。
    連結:
  3. 9. 陳國彥,「高鐵列車於橋樑結構引致地盤振動之評估」,碩士論文,中原大學土木工程研究所,2008。
    連結:
  4. 10. 張仕銘,「高鐵列車於路堤結構引致地盤振動之評估」,碩士論文,中原大學土木工程研究所,2008。
    連結:
  5. 11. 鄧帷真,「台南科學園區高鐵列車震動衰減之分析研究」,碩士論文,國立成功大學土木工程研究所,2008。
    連結:
  6. 12. 邱廷銳,「高鐵列車於橋樑結構引致地盤振動之影響因子評估」,碩士論文,中原大學土木工程研究所,2009。
    連結:
  7. 14. 韓卓高,「高鐵列車於路堤結構引致地盤振動之影響因子評估」,碩士論文,中原大學土木工程研究所,2009。
    連結:
  8. 15. 黃宗宸,「台南科學園區地盤振動試驗與其衰減特性之研究」,博士論文,國立台灣大學,2010。
    連結:
  9. 17. 黃德政,「台北捷運文湖線之振動量測與評估」,碩士論文,中原大學土木工程研究所,2011。
    連結:
  10. 18. 魏碩賢,「高鐵列車引致地盤振動之遠域影響範圍評估」,碩士論文,中原大學土木工程研究所,2014。
    連結:
  11. 24. Wiss, JF. “Damage effects of pile-driving vibrations”, Highway Research Records, 155, 14-20, 1967.
    連結:
  12. 26. Chen, YJ, Chang, SM and Han, CK. “Evaluation of ground vibration induced by high-speed trains on embankments”, Noise Control Engineering Journal, 58( 1), 43-53, 2010.
    連結:
  13. 27. Chen, YJ, Chen, KY and Chiu, TJ. “Evaluation of ground vibration induced by high-speed trains on bridge structures”, Noise Control Engineering Journal, 59, 4-5, 372-382, 2011.
    連結:
  14. 28. Chen, YJ, Ju, SH, Ni, SH, and Shen, YJ. “Prediction methodology for ground vibration induced by passing trains on bridge structures”, Journal of Sound and Vibration, 302(4), 806-820, 2007.
    連結:
  15. 29. Chen, YJ, Shen, YJ, Chen, KY, and Chang, SM. “Some characteristics of ground vibration as induced by high-speed trains”, GSP 181, ASCE, 2008.
    連結:
  16. 30. Dawn, TM, and Stanworth, CG. “Ground vibrations from passing trains”, Journal of Sound and Vibration, 66(3), 355-362, 1979.
    連結:
  17. 33. FRÝBA, L. “Vibration of solids and structures under moving loads”, Noordhoff International Publication, Gröningen, Netherlands, 484, 1972.
    連結:
  18. 34. Gordon, CG. “Generic criteria for vibration sensitive equipment”, Optics and Metrology, 1619, 71-75, 1991.
    連結:
  19. 35. Gordon, CG. “Generic vibration criteria for vibration-sensitive equipment”, IEST, 1999.
    連結:
  20. 36. Gutowski, TG and Dym, CL. “Propagation of ground vibration: a review”, Journal of Sound and Vibration, 49(2), 179-193, 1976.
    連結:
  21. 37. Ju, SH and Lin, HT. “Analysis of train-induced vibrations and vibration reduction schemes above and below critical Rayleigh speeds by finite element method”, Soil Dyn. Earthquake Eng., 24(12), 993-1002, 2004.
    連結:
  22. 38. Miller, GF and Pursey, H. “On the partition of energy between elastic waves in a semi-Infinite solid”, Proc. Royal Society, A233, 55-69, 1955.
    連結:
  23. 41. Verhas, HP. “Prediction of the propagation of train- induced ground vibration”, Journal of Sound and Vibration, 66(3), 371– 376, 1979.
    連結:
  24. 43. Yoshioka, O. “Basic characteristics of Shinkansen-induced ground vibration and its reduction measures”, Proceedings, the International Workshop Wave 2000, 219-237, 2000.
    連結:
  25. 44. Chen, YJ, Chiu, TJ and Chen, KY. “Evaluation of ground vibration induced by high-speed trains on bridgestructures”, Noise Control Engineering Journal, 59(4), 372-382, July-Aug 2011.
    連結:
  26. 45. Chen, YJ, Huang, TC and Shen, YJ. “Evaluation of ground vibration induced by rail systems”, Noise Control Engineering Journal, 61(2), 145-158, March-April 2013.
    連結:
  27. 46. Chen, YJ, Lin, SW, Shen, YJ. “Evaluation of ground vibration prediction model for high-speed trains on embankments”, Journal of Vibroengineering, 16( 4), 1877-1887, 2014.
    連結:
  28. 1. 王藝明,「捷運木柵線交通振動特性之研究」,碩士論文,國立交通大學,1998。
  29. 2. 吉岡修,「新幹線鐵道振動之發生、傳播與防振對測法之應用」,鐵道總研報告,財團法人鐵道總合技術研究所,特別第30號,267頁,1999。
  30. 3. 中華顧問工程司,「台北捷運木柵(內湖延伸)線145標-沿線振動量測及影響評估分析」,財團法人中華顧問工程司,2002。
  31. 5. 林威廷,「行車引致地盤振動之量測」,碩士論文,國立台灣大學,2003。
  32. 7. 高宗正,「捷運結構工程-回顧與創新」,捷運技術半年刊;第30期,2004。
  33. 8. 楊德志,「行車振動對鄰近建築物之影響研究並以台北捷運系統為例」,碩士論文,國立台北科技大學,2004。
  34. 13. 陳俊宏、于中原,「捷運內湖線U型樑之規劃與設計」,捷運技術半年刊;第40期,2009。
  35. 16. 郭珍祥,「機械或車輛引致之結構及土壤之振動效應」,碩士論文,國立台灣大學木工程研究所,台北,1996。
  36. 19. 日本振動規制法施行規則,日本環境省,振動規制法,1976。
  37. 20. American National Standards Institute, “Preferred frequencies and band numbers for acoustical measurement”, ANSI S 1.6, 1984.
  38. 21. ANSI S1.11-1986(ASA 65-1986), “Specifications for octave-band and fractional-octave-band analog and digital filters”, Acoustical Society of America, NY, 1993.
  39. 22. Bolt, BA. Earthquakes: A Primer, W H Freeman, San Francisco, 241, 1978.
  40. 23. Bornitz, G. “Uber die ausbreitung der von groszkolben-maschinen erzeugten bodenschwingungen in die tiefe”, Journal Springer, Berlin, 1931.
  41. 25. Wiss, JF. “Construction vibration: state-of-the-art”, Journal Geotechnical Engineering, ASCE, 107(2), 167-181, 1981.
  42. 31. Edwards, AT and Northwood, TD. “Experimental studies of the effects of blasting on structures”, The Engineer, 210, 1960.
  43. 32. Ejima, A. “Basic research for countermeasure against ground vibration from concrete girder type elevate of Shinkansen”, Ph.D. Thesis, University of Tokyo, 1980.
  44. 39. U.S. Department of Transportation Federal Railroad Administration (FRA). “Manual for high-speed ground transportation noise and vibration impact assessment”, 6-1-18, 1998.
  45. 40. U.S. Department of Transportation Federal Transit Administration (FTA). “Manual for transit noise and vibration impact assessment”, 2006.
  46. 42. Woods, RD. “Screening of Surface Waves in Soils”, Journal Soil Mech. and Found. Div., ASCE, 94(4), 951-979, 1968.