Title

磊晶成長過程之晶圓曲率評估

Translated Titles

Evaluation of wafer curvature during epitaxy growth

Authors

何采螢

Key Words

磊晶製程 ; 緩衝層 ; 晶圓曲率 ; 幾何非線性 ; 應力集中 ; Epitaxy growth ; buffer layer ; wafer curvature ; geometric nonlinear ; stress concentration

PublicationName

成功大學土木工程學系學位論文

Volume or Term/Year and Month of Publication

2018年

Academic Degree Category

碩士

Advisor

林育芸

Content Language

繁體中文

Chinese Abstract

本論文探討GaN磊晶於矽基板之晶圓曲率變化與磊晶薄膜應力之關係。薄膜應力來自於磊晶層與基板間之晶格不匹配與熱不匹配,與磊晶結構有關。本文首先利用有限元素軟體ABAQUS建立磊晶模型模擬薄膜應力導致晶圓翹曲過程,與Stoney等理論曲率公式比較,探討幾何非線性之影響與誤差量。將非等向性之材料性質轉換為雙軸應力條件下之彈性模數,並探討多層薄膜於曲率公式之運用。磊晶製程中包含基板升溫段、緩衝層成長段、GaN成長段與降溫段,透過製程中溫度變化與曲率變化之監控,加以了解各階段行為。從實驗數據之曲率變化回推於線性與非線性條件下之各層薄膜因晶格不匹配造成之應力,並討論升溫與降溫前後因材料熱不匹配造成之曲率變化應如何計算。透過模擬驗證磊晶過程之曲率變化,並探討矽基板上下表面應力分布與晶邊應力集中現象。將實驗所得之結果,延伸預測同樣磊晶結構於不同厚度之基板之曲率變化。預期若微調各磊晶層厚度之曲率變化亦可沿用。

English Abstract

This research focuses on the curvature variation of GaN on a silicon substrate by the film stress during epitaxy. The film stress is attributed to the lattice mismatch and thermal mismatch between the epitaxial layer and the substrate, depending on the structure of epitaxy. A finite element software ABAQUS is used to build the numerical model to simulate the wafer bowing caused by film stress. By comparing the numerical results with Stoney and another analytical formula of curvature, the effect of nonlinear geometry and the error are obtained. In order to use the formula, the anisotropic material properties were transformed to an effective elastic modulus under biaxial stress condition. The application of the analytical formula for multi-layer films was also discussed. The epitaxy process consists of the heating stage of the silicon substrate, the growth stages of buffer layers and GaN layer, and the cooling stage of the wafer. Through the monitoring of the temperature variation and the curvature variation in the epitaxy process, we can understand the behavior of each stage. The film stresses attributed to lattice mismatch are obtained from back-calculating experimental data under geometrically linear and nonlinear conditions. How to compute the curvature variation caused by thermal mismatch from the heating stage to the cooling stage is discussed. The curvature variation in epitaxy process is verified by the simulation. The stress distribution on the top and bottom of the silicon substrate, and the stress concentration near the wafer edge are also studied. The experimental curvature variation was extended to the prediction for the same epitaxy structure on silicon substrates with different thickness. We expect that the extension can be applied to the slight variation of film thickness.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
Reference
  1. 參考文獻
  2. [1] A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken and A. Krost,〝Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1um in Thickness〞, The Japan Society of Applied Physics, vol.39, pp.1183-1185, 2000
  3. [2] L. B. Freund and S. Suresh, 〝Thin Film Materials〞, Cambridge University Press, United Kingdom, pp.86-174, 2003
  4. [3] A. Krost and A. Dadgar, 〝Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer〞, Materials Science and Engineering, vol.B93, pp.77-84, 2002
  5. [4] Y. Zhang, and Y. Zhao,〝General Theory of Three-dimensional Consolidation〞, Journal of Applied Physics, vol. 99, pp.0535131-0535137, 2006
  6. [5] N. Schwarzer and F. Richter,〝On the determination of film stress from substrate bending: Stoney´s formula and its limits〞, TU Chemnitz, pp.1-17, 2006
  7. [6] L. B. Freund and J. A. Floro,〝Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations〞, Applied Physics Letters, vol.74, pp.1987-1989, 1999
  8. [7] S. Zamir, B. Meyler, E. Zolotoyabko, J. Salzman,〝The elect of AlN butter layer on GaN grown on (1 1 1)-oriented Si substrates by MOCVD〞, Journal of Crystal Growth, vol.218, pp.181-190, 2000
  9. [8] P. Chen, R. Zhang, Z.M. Zhao, D.J. Xia, B. Shen, Z.Z. Chen, Y.G. Zhou, S.Y. Xie, W.F. Lu, Y.D. Zheng, 〝Growth of high quality GaN layers with AlN buffer on Si(1 1 1) substrates〞, Journal of Crystal Growth, vol.225, pp.150-154, 2001
  10. [9] J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, Shu Yuan, S.J. Geng, S. Zhang, 〝Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering〞, Surface & Coatings Technology, vol.225, pp.68-73, 2005
  11. [10] Y. Dai, S. Li, Q. Sun, Q. Peng, C. Gui, Y. Zhou, S. Liu, 〝Properties of AlN film grown on Si(111)〞, Journal of Crystal Growth, vol.435, pp.76-83, 2016
  12. [11] R. Liu, F. A. Ponce, A. Dadgar, and A. Krost,〝Atomic arrangement at the AlN/Si (111) interface〞, Applied Physics Letters, vol.83, pp.860-862, 2003
  13. [12] M. Miyoshi, A. Watanabe and T. Egawa,〝Modeling of the wafer bow in GaN-on-Si epiwafers employing GaN/AlN multilayer buffer structures〞, Semiconductor Science and Technology, vol.31, pp.1-7, 2016
  14. [13] P.J. Lin, S.Y. Huang, W.K. Wang, C.L. Chen, B.C. Chung, D.S. Wu,〝Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice〞, Applied Surface Science, vol.362, pp.434-440, 2016
  15. [14] A. Able, W. Wegscheider, K. Engl, J. Zweck,〝Growth of crack-free GaN on Si(1 1 1) with graded AlGaN buffer layers〞, Journal of Crystal Growth, vol.276, pp.415-418, 2005
  16. [15] K.L. Lin, E.Y. Chang, Y.L. Hsiao, and W.C. Huang,〝Growth of GaN film on 150 mm Si(111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method〞, Applied Physics Letters, vol.91, pp.2221111-2221113, 2007
  17. [16] K. Cheng, H. Liang, M.V. Hove, K. Geens, B. D. Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, J. Dekoster, J.I.A. Borniquel, S. W. Jun, and H. Chung, 〝AlGaN/GaN/AlGaN Double Heterostructures Grown on 200 mm Silicon (111) Substrates with High Electron Mobility〞, Applied Physics Express, vol. 5, pp.0110021-0110023, 2012
  18. [17] J. Cheng, X. Yang, L. Sang, L. Guo, J. Zhang, J. Wang, C. He, L. Zhang, M. Wang, F. Xu, N. Tang, Z. Qin, X. Wang and B. Shen,〝Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition〞, Scientific Reports, vol. 6:23020, pp.1-7, 2016
  19. [18] 黃冠庭, 〝高強度屏蔽奈米化矽基板之應力控制以抑制氮化鎵磊晶後基板翹曲〞, 國立清華大學碩士論文, 2017
  20. [19] Y. Duan, G. Tang, L. Qin, and L. Shi,〝Elasticity and polarization of alloys subjected to uniaxial and biaxial compression〞, The European Physical Journal B, vol.66, pp.211-215, 2008
  21. [20] M. Edwards,〝Temperature Dependent Properties of GaN〞, Morgan Report, vol.1, pp.1-7, 2009
  22. [21] D. T. Dul and P.Korecki,〝Wavelet analysis of white beam x-ray fluorescence holograms: determination of lattice sites and imaging of local atomic structure〞, New Journal of Physics, vol.14:113004, pp.1-23,2012
  23. [22] Shelan Mustafa,〝Size–dependent structure parameter for silicon nanowires and nanoparticles〞, Hindawi, Iraq, vol.10, pp37-68, 2010
  24. [23] 陳琨曜, 〝薄膜應力與基板彎曲問題之研究〞, 國立成功大學碩士論文, 2006
  25. [24] 賴岳群, 〝磊晶過程之晶邊接觸問題數值分析〞, 國立成功大學碩士論文, 2017