Title

河川淤泥應用於泡沫與改質無機聚合物之研究

Translated Titles

Foamed and Latex-modified Inorganic Polymers Made from River Sludge

Authors

古道

Key Words

河川淤泥 ; 無機聚合物 ; 預成形泡沫 ; 泡沫無機聚合物 ; 高分子聚合物 ; 改質無機聚合物 ; River sludge ; Inorganic polymer ; Foamed inorganic polymer ; Latex-modified inorganic polymer

PublicationName

成功大學土木工程學系學位論文

Volume or Term/Year and Month of Publication

2018年

Academic Degree Category

碩士

Advisor

黃忠信

Content Language

繁體中文

Chinese Abstract

不同河川地區河川淤泥之化學與物理性質差異甚大,有些河川淤泥主要成分為黏土,有些則以砂為主,另外,由於河川所受汙染來源與程度不同,河川淤泥中之雜質,可能包括重金屬、塑膠袋、牡蠣殼及玻璃碎片等,其中,有機不淨物含量高之河川淤泥,無法直接再利用於CLSM、改質淤泥及取代粒料等工程應用,只能藉由高溫煅燒後製成無機聚合物。本研究將台南地區河川淤泥再利用於製作無機聚合膠結材及混凝土,將其分別加入預成形泡沫,或高分子聚合物進行改質,製成不同相對密度之泡沫無機聚合物,以及不同高分子材料之改質無機聚合物,除考慮大量消耗河川淤泥,同時,增加其製品之高附加經濟價值,因此,藉由試驗量測此兩種河川淤泥無機聚合物之物理及力學性質,評估其再利用於營建材料之可能性。

English Abstract

The chemical and physical properties of river sludge could vary significantly, depending on the location it is evacuated from. River sludge in Taiwan mainly contains clay or sand. In addition, the most waste substances in river sludge are heavy metals, plastic bags, oyster shells and glass fragments, resulting from the pollution of each river. The river sludge with a high organic content cannot be utilized as a construction material for the engineering applications of controlled low strength material (CLSM), organo-modified sludge and aggregate as a replacement of fine aggregate in concrete. It can only be calcined at high temperatures and then reused as a raw material to produce alkali-activated inorganic polymers. In this study, some river sludge in Tainan was first reused as a raw material to make inorganic polymeric binder and concrete. Furthermore, foamed inorganic polymers with various relative densities and latex-modified inorganic polymers with different introduction of polymeric materials were made from some river sludge, tested mechanically and then compared to each other. As a result, the improvement of mechanical properties and the reduction of manufacturing cost were studied to evaluate the feasibility of using a large amount of river sludge as a raw material in producing inorganic polymeric binders and concrete with good thermal insulation and high energy absorption.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
Reference
  1. [1] 經濟部水利署,https://www.wra.gov.tw/。
  2. [2] 潘彥仰,「河川淤泥於營建材料再利用之研究」,國立成功大學土木工程研究所,碩士論文,2017。
  3. [3] 曾進宏,「聚合物改質水泥基複合材料性質之研究」,國立海洋大學河海工程研究所,碩士論文,1997。
  4. [4] Davidovits, J., “X-Ray Analysis and X-Ray Diffraction of Casting Stones from the Pyramids of Egypt, and the Limestone of the Associated Quarries,” Science In Egyptology Symposta, pp.511-520, 1984.
  5. [5] Xu, H. and Van Deventer, J. S. J., ‘‘The geopolymerisation of aluminosilicate minerals,’’ International Journal Minerals Process, Vol. 59, pp.247-266, 2000.
  6. [6] 陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,博士論文,2009。
  7. [7] 張瑜文,「水庫淤泥應用於無機聚合膠結材」,國立成功大學土木工程研究所,碩士論文,2008。
  8. [8] 王秋閔,「營建剩餘土應用於無機聚合膠結材」,國立成功大學土木工程研究所,碩士論文,2009。
  9. [9] Wang, S. D., Pu X. C., Scrivener, K. L., Pratt, P. L., ‘‘Alkali-activated cement and concrete. A review of properties and problems,’’ Advances in Cement Research, 7(27), pp.93-105, 1995.
  10. [10] 王秋閔,「營建剩餘土應用於無機聚合膠結材」,國立成功大學土木工程研究所,碩士論文,2009。
  11. [11] Davidovits, J., “Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials,” United States Patent 5 349 118, 1994.
  12. [12] Yip, C. K., Lukey, G. C. and van Deventer* J. S. J., “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation,” Cement and Concrete Research, Vol. 35, pp. 1688-1697, 2005.
  13. [13] Phair, J. W. and Van Deventer, J. S. J., “Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer,” Minerals Engineering, Vol. 14, No. 3, pp. 289-304, 200l.
  14. [14] Tonya, T.D., Gibson, L.J., “Structure and mechanics of cement foams,” Journal of Materials Science, Vol.27, pp.6371-6378, 1992.
  15. [15] 閆振甲、何豔君,「泡沫混凝土實用生產技術」,化學工業出版社,2006。
  16. [16] Bell, J. and Kriven, W., “Preparation of Ceramic Foams from Metakaolin-Based Geopolymer Gels,” Developments in Strategic Materials: Ceramic Engineering and Science Proceedings, Volume 29, pp. 96-111,2009.
  17. [17] Schmidt, G., Randel P., Engels, H.-W. and Geick, B., “Furnace with in situ foamed insulation and process for its manufacture,” USA Patent 5485986, 1996.
  18. [18] 曾美玲、張天益,「無機聚合物金屬發泡不同操作條件之探討」,中國鑛冶工程學會會刊,pp.77-82,2011。
  19. [19] 王奕惟,「發泡無機聚合物之開發及耐熱性能研究」,國立台北科技大學土木與防災研究所,碩士論文,2009。
  20. [20] Al Bakri, A. M. M., Hussin, K., Bnhussain, M., Ismail, K.N., Yahya, Z., and Razak, R. A., “Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent,” International journal of molecular sciences, Vol. 13, p. 7186, 2012.
  21. [21] 楊昆憲,「含矽質廢棄物之發泡無機聚合物」,國立成功大學土木工程研究所,博士論文,2015。
  22. [22] Ohama, Y., “Polymer-based admixtures,” cement & concrete composites ,1998
  23. [23] Ohama, Y., “Recent progress in concrete -polymer composites,” Adv. Cem. Based Mater, 1997
  24. [24] 梁乃興,「聚合物改性水泥混凝土」,人民交通出版社,1995。
  25. [25] Aggarwal, L. K., Thapliyal, P. C., Karade, S. R., “Properties of polymer-modified mortars using epoxy and acrylic emulsions,” Construction and Building Materials, vol. 21 pp. 379–383, 2007.
  26. [26] 陳瀟,「一種聚合物改性高爐礦渣粉材料」,中華人民共和國國家智慧知識產業局專利號CN105800969A,2016。
  27. [27] 莫羡忠,王榮華,龐錦英,勞鋒,崔學民,「地聚物基複合材料的製備及彎曲強度的研究」,廣西大學學報,第34卷第2期,2009。
  28. [28] CNS 1010,「水硬性水泥墁料抗壓強度檢驗法」,1993。
  29. [29] CNS 1234,「混凝土抗彎強度試驗法」,1984。
  30. [30] ASTM C642-13,「Standard Test Method for Density, Absorption, and Voids in Hardened Concrete」,2013。
  31. [31] Wang, S. D., Pu X. C., Scrivener, K. L., Pratt, P. L., Alkali-activated cement and concrete. A review of properties and problems, Advances in Cement Research, 7(27), 93-105, 1995.
  32. [32] Gibson L.J., Ashby M.F., The mechanics of three-dimensional celluar materials, Pro. Roy. Soc. Lond. A 382, 43-59, 1982.
  33. [33] 王怡雯,「泡沫無機聚合物之物理性質」,國立成功大學土木工程研究所,碩士論文,2007。
  34. [34] 洪塗城,「泡沫無機聚合物製程及性能之研究」,國立成功大學土木工程研究所,博士論文,2012。
  35. [35] Mindess, S., Young, J. F., Darwin, D., Concrete, Prentica Hall, 2003.