Translated Titles

Development of Fatigue Analysis and Design Program for the Jacket-Type Offshore Wind Turbine



Key Words

套管式離岸風機 ; 疲勞分析設計 ; 雨流計數法 ; 應力-壽命曲線 ; 線性毀損律 ; 布羅伊登法 ; Jacket-type offshore wind turbine ; Fatigue analysis and design ; Rainflow counting method ; S-N curve ; Miner’s rule ; Broyden’s method



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

台灣具有相當優良的風場條件,使離岸風力發電成為台灣目前極力推廣的再生能源之一。過去套管式離岸風機支撐結構主要針對極端環境條件下進行極限負載的分析與設計,而本研究將著重探討疲勞負載下的損傷分析與使用年限設計。本研究根據規範DNVGL-RP-C203開發離岸風機疲勞分析與設計相關程式;先針對套管式支撐結構進行接頭型態評估,再使用雨流計數法配合S-N curve 與Miner’s rule計算疲勞損傷;最後使用Broydeb’s method對桿件厚度進行數值運算,達成離岸風機疲勞壽命目標值,例如為20年的使用年限。整合離岸風機支撐結構有限元素模型與設計載重組合成一個輸入檔,先後考量極限負載與疲勞負載,待程式自動化讀取桿件斷面進行有限元分析後,根據API RP 2A-LRFD鋼結構設計規範進行離岸風機支撐結構最佳化設計,如此以得到支撐結構所需的總用鋼量。最後運用多機平行運算技巧,將使windturb.exe成為一套更加完整且具效率的離岸風機分析與設計程式,並提供業界工程作為可靠的參考資源。電腦輔助分析程式由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。

English Abstract

Taiwan has a very good condition of the wind field, making the offshore wind power has become one of the most widely promoted renewable energy sources in Taiwan. In the past, the jacket-type offshore wind turbine support structure was mainly for ultimate load analysis and design under extreme environmental conditions. However, this study will focus on the damage analysis and the service life design under fatigue load. In this thesis, according to the specification of the DNVGL-RP-C203 development the offshore wind turbine fatigue analysis and design programs. Firstly, the joint type of the support structure was classified, and then the fatigue damage was calculated by the rainflow counting method combined with S-N curve and Miner's rule. Finally, the Broydeb's method is used to calculate the thickness of the member to reach the offshore wind turbine fatigue life, e.g. with a service life of 20 years. Integrated the support structure finite element model and design load cases into an input file. After considering the ultimate load and fatigue load, the program will automatically read the section of each member for finite element analysis, and conduct the optimal design of the jacket-type foundation by using the API RP 2A-LRFD steel structure design specifications. Therefore, the total design steel weights of the support structure are obtained. Finally, using multi-machine parallel computing techniques will make the windturb.exe as a more complete and efficient analysis and design program of the offshore wind turbine, and provide the engineering industry as a reliable reference source. Note that the computer programs developed by the research team of Shen-Haw Ju are open and free to use.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
  1. [8] DNVGL-RP-C203, in Fatigue design of offshore steel structures. (2016), Det Norske Veritas: Norway.
  2. [12] Leblanc, C., B.W. Byrne, and G.T. Houlsby, Response of stiff piles to random two-way lateral loading. Geotechnique, (2010). 60(9): p. 715-721.
  3. [15] Rafsanjani, H.M. and J.D. Sorensen, Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines. Energies, (2015). 8(4): p. 2908-2923.
  4. [16] Yeter, B., Y. Garbatov, and C.G. Soares, Fatigue damage assessment of fixed offshore wind turbine tripod support structures. Engineering Structures, (2015). 101: p. 518-528.
  5. [17] Saini, D.S., D. Karmakar, and S. Ray-Chaudhuri, A review of stress concentration factors in tubular and non-tubular joints for design of offshore installations. Journal of Ocean Engineering and Science, (2016). 1(3): p.186
  6. [18] Wang, K.P., et al., Fatigue damage characteristics of a semisubmersible-type floating offshore wind turbine at tower base. Journal of Renewable and Sustainable Energy, (2016). 8(5): p. 16.
  7. [19] Yeter, B., Y. Garbatov, and C.G. Soares, Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures. International Journal of Fatigue, (2016). 87: p. 71-80.
  8. [20] Pradana, M.R., X.D. Qian, and S. Swaddiwudhipong, Simplified Effective Notch Stress calculation for non-overlapping circular hollow section K-Joints. Marine Structures, (2017). 55: p. 1-16.
  9. [21] Rassaian, M. and J.C. Lee, Generalized multi-domain method for fatigue analysis of interconnect structures. Finite Elements in Analysis and Design, (2004). 40(7): p. 793-805.
  10. [23] Tang, D., et al., Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method. Energy, (2017). 141: p. 2300-2313.
  11. [25] Thomsen, K. and P. Sorensen, Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, (1999). 80(1-2): p. 121-136.
  12. [26] Dong, W.B., T. Moan, and Z. Gao, Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain. Engineering Structures, (2011). 33(6): p. 2002-2014.
  13. [27] Schaumann, P., S. Lochte-Holtgreven, and S. Steppeler, Special fatigue aspects in support structures of offshore wind turbines. Materialwissenschaft Und Werkstofftechnik, (2011). 42(12): p. 1075-1081.
  14. [28] Dong, W.B., T. Moan, and Z. Gao, Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliability Engineering & System Safety, 2012. 106: p. 11-27.
  15. [29] Zhao, R.Y., et al., Fatigue distribution optimization for offshore wind farms using intelligent agent control. Wind Energy, (2012). 15(7): p. 927-944.
  16. [30] Alati, N., et al., On the fatigue behavior of support structures for offshore wind turbines. Wind and Structures, (2014). 18(2): p. 117-134.
  17. [31] Brennan, F. and I. Tavares, Fatigue design of offshore steel mono-pile wind substructures. Proceedings of the Institution of Civil Engineers-Energy, (2014). 167(4): p. 196-202.
  18. [32] Passon, P. and K. Branner, Load calculation methods for offshore wind turbine foundations. Ships and Offshore Structures, (2014). 9(4): p. 433-449.
  19. [33] Muskulus, M., Simplified rotor load models and fatigue damage estimates for offshore wind turbines. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, (2015). 373(2035): p. 20.
  20. [34] Passon, P., Damage equivalent wind-wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines. Renewable Energy, (2015). 81: p. 723-736.
  21. [35] Zwick, D. and M. Muskulus, The simulation error caused by input loading variability in offshore wind turbine structural analysis. Wind Energy, (2015). 18(8): p. 1421-1432.
  22. [36] Chew, K.H., et al., Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads. Marine Structures, (2016). 47: p. 23-41.
  23. [38] Lee, Y.S., et al., Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation. Renewable Energy, (2016). 85: p. 1214-1225.
  24. [39] Zwick, D. and M. Muskulus, Simplified fatigue load assessment in offshore wind turbine structural analysis. Wind Energy, (2016). 19(2): p. 265-278.
  25. [40] AlHamaydeh, M., S. Barakat, and O. Nasif, Optimization of Support Structures for Offshore Wind Turbines Using Genetic Algorithm with Domain-Trimming. Mathematical Problems in Engineering, (2017): p. 14.
  26. [41] Marino, E., A. Giusti, and L. Manuel, Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds. Renewable Energy, (2017). 102: p. 157-169.
  27. [42] Oest, J., et al., Structural optimization with fatigue and ultimate limit constraints of jacket structures for large offshore wind turbines. Structural and Multidisciplinary Optimization, (2017). 55(3): p. 779-793.
  28. [43] Hafele, J., et al., A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures. Renewable Energy, (2018). 118: p. 99-112.
  29. [44] Chiang, Yao-Ting, Ultimate Load Analysis and Design of the Jacket-Type Offshore Wind Turbine under Extreme Environmental Conditions, National Cheng Kung University, Journal Article, (2017).
  30. [45] Chiu, Yu-Chuan, Parallel Processing Techniques and Applications in Design of the Jacket-Type Offshore Wind Turbine, National Cheng Kung University, Journal Article, (2017).
  31. References
  32. [1] IEC 61400-1, in International Standard Wind turbines – Part 1: Design requirements (3rd ed.). (2005), International Electrotechnical Commission.
  33. [2] IEC 61400-3, in International Standard Wind turbines - Part 3: Design requirements for offshore wind turbines (1st ed.). (2009), International Electrotechnical Commission.
  34. [3] DNVGL-ST-0437, in Loads and site conditions for wind turbines. (2016), Det Norske Veritas: Norway.
  35. [4] Jason M. Jonkman, M.L.B.J., FAST User’s Guide (2005), National Renewable Energy Laboratory.
  36. [5] J. Jonkman, S.B., W. Musial, and G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development. (2009), National Renewable Energy Laboratory.
  37. [6] B.J. Jonkman, L.K., TurbSim User's Guide. (2012), National Renewable Energy Laboratory.
  38. [7] DNV-RP-C205, in Environmental Conditions and Environmental Load. (2010), Det Norske Veritas: Norway.
  39. [9] DNVGL-RP-0034, in Steel forgings for subsea applications. (2015), Det Norske Veritas: Norway.
  40. [10] DNV-OS-J101, in Design of Offshore Wind Turbine Structures. (2014), Det Norske Veritas: Norway.
  41. [11] El-Reedy, M.A., Chapter 4 - Offshore structures design, in Marine Structural Design Calculations. (2015), Butterworth-Heinemann: Oxford. p. 85-187.
  42. [13] Lee, Y.-L. and T. Tjhung, Chapter 3 - Rainflow Cycle Counting Techniques, in Metal Fatigue Analysis Handbook. (2012), Butterworth-Heinemann: Boston.
  43. [14] Al Shamaa, D. and K. Geissler, Generalized consideration of endurance limit for fatigue stress analysis by means of fatigue life curves. Stahlbau, (2013). 82(2): p. 87-96.
  44. [22] Remani, C., Numerical Methods for Solving Systems of Nonlinear Equations, in Mathematical Sciences. (2012), Lakehead University: Ontario, Canada.
  45. [24] William H. Press, S.A.T., William T. Vetterling, Brian P. Flannery, Michael Metcalf, Chapter 9.7 Globally Convergent Methods for Nonlinear Systems of Equations "Multidimensional Secant Methods: Broyden’s Method", in Numerical Recipes in Fortran 77. (1992), Cambridge University New York, USA. p. 382-386.
  46. [37] Duhrkop, J., et al., Influence of soil and structural stiffness on the design of jacket type substructures. Stahlbau, (2016). 85(9): p. 612.