Title

空氣彈力系統動態分析與顫振控制

Translated Titles

Sliding Mode Control Design for Aeroelastic System

DOI

10.6844/NCKU.2011.01209

Authors

吳誌賢

Key Words

空氣彈力系統 ; 線性矩陣不等式 ; 顫振現象 ; Aeroelastic System ; LMI ; Flutter

PublicationName

成功大學航空太空工程學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

陳介力

Content Language

繁體中文

Chinese Abstract

空氣彈力系統為一非線性系統,相對於系統的動態模型有兩個自由度,分別是俯仰狀態和振幅狀態。其機翼模型在結構力、慣性力和空氣動力的交互作用影響,導致飛行器產生非預期的動態。在文獻中常見到的升力力矩模型有兩種:擬似穩態流和非穩態流。本文將介紹這兩種升力力矩模型的不同,以便日後分析。 本文考慮了單控制面的機翼系統模型,並利用此模型做了兩次座標轉換。在第一次座標轉換後,因為系統為單控制面,因此產生了非匹配式的部分。在非匹配式的部分,利用兩狀態之間的關係,設定其關係矩陣,使非匹配式的部份穩定,再利用此關係矩陣,做第二次的座標轉換。而第二次的座標轉換引入了順滑函數,並利用等效控制將非線性項和不確定項穩定,最後利用切換控制將外擾消除。 在設計等效控制時,通常會利用Lyapunov法來推導控制律,但是在空氣彈力系統中,其非線性項的影響非常大,所以利用此方法所推導出來的控制律並不實用。因此本文改用了線性矩陣不等式,降低其保守性,找出最佳的控制律。最後從模擬結果可以看出所推導出來的控制律可以壓制住顫振現象。

English Abstract

Aeroelastic system is a nonlinear system. The dynamic model describes the plunge and the pitch motion of a wing. The interaction of nonlinearity of structural, inertial force and aerodynamic force will lead to wing instability in forms of flutter and limit cycle oscillation. There are two kinds of lift-moment model in the literature. One is the quasi-steady flow, the other is the unsteady flow. This thesis will derivate the unsteady flow lift-moment model, and compare with quasi-steady flow lift-moment model. In this thesis, we consider the wing system with one control surface. And we transform the coordinate into two part of the system. One part of the system is the mismatch term, another is the match term. We determine the matrix to stabilize the mismatch term. Then transform the coordinate again by the matrix. In this coordinate transformation, we introduce the sliding function into the system. And we use the equivalent control to eliminate the nonlinear term and uncertain term. Then the switching control is introduced to eliminate the external disturbance. The Lyapunov method is usually used to design the equivalent control. In this system, the nonlinear term is too large to find an applicable control matrix. Therefore, the linear matrix inequality method is applied to find the optimal control matrix. Numerical studies demonstrate that the proposed we find the control law can suppress the flutter phenomenon effectively.

Topic Category 工學院 > 航空太空工程學系
工程學 > 交通運輸工程
Reference
  1. Jeonghwan Ko, Andrew J. Kurdila and Thomas W. Strganac, 1997, “Nonlinear Control of a Prototypical Wing Section with Torsional Nonlinearity.”, Journal of Guidance, Control, And Dynamic, Vol. 20, No. 6, pp. 1181-1189.
    連結:
  2. Nilesh Bhoir and Sahjendra N. Singh, 2005, “Control of Unsteady Aeroelastic System via State-Dependent Riccati Equation Method”, Journal of Guidance, Control, And Dynamic, Vol. 28, No. 1, pp.78-84
    連結:
  3. Nilesh Bhoir, Sahjendra N. Singh, 2004, “Output feedback nonlinear control of an aeroelastic system with unsteady aerodynamics”, Aerospace Science and Technology, Vol. 9, No. 3, pp. 195-205
    連結:
  4. Jeffry J. Block and Thomas W. Strganac, 1998, “Applied Active Control for a Nonlinear Aeroelastic Structure”, Journal of Guidance, Control, And Dynamic, Vol. 21, No. 6, pp. 838-845
    連結:
  5. Takanori Degaki, and Shinji Suzuki, 2001, “Sliding Mode Control Application for Two-Dimensional Active Flutter Suppression”, The Japan Society for Aeronautical and Space Sciences, Vol. 43, No. 142, pp.174-181
    連結:
  6. Dewey H. Hodges, G. Alvin Pierce, 2002, “Introduction to Structural Dynamics and Aeroelasticity”, Cambridge University Press, Cambridge, pp.119-142
    連結:
  7. H. Haddadpour, R.D. Firouz-Abadi, 2006, “Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow”, Thin-Walled Structures, Vol.44, No. 9, pp. 931-936
    連結:
  8. Jeonghwan Ko, and Thomas W. Strganac, 1998, “Stability and Control of a Structurally Nonlinear Aeroelastic System.”, Journal of Guidance, Control, And Dynamic, Vol. 21, No. 5, pp.718-725
    連結:
  9. Daochun Li, Shijun Guo, Jinwu Xiang, 2010,”Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities”, Journal of Sound and Vibration, Vol. 329, No. 22, pp4756-4771
    連結:
  10. L. Librescu, P. Marzocca, 2005, “Advance in the linear/nonlinear control of aeroelastic structural systems”, ACTA Mechanica, Vol. 178, No.3-4, pp.147-186
    連結:
  11. Sungsoo Na, Liviu Librescu, Myung-Hyun Kim, In-Joo Jeong, Pier Marzocca, 2006, ”Robust aeroelastic control of flapped wing systems using a sliding mode observer”, Aerospace Science and Technology, Vol. 10, No. 2, pp.120-126
    連結:
  12. Todd O’Neil, Heather Gilliatt, and Thomas W. Straganac, 1996 , “Investigations of Aeroelastic Response for A System with Continuous Structural Nonlinearities”, AIAA Paper No. 96-1390
    連結:
  13. Glenn O. Thompson and Gerald J. Kass, 1972, “Active Flutter Suppression – An Emerging Technology.”, Journal of Aircraft, Vol. 9, No. 3, pp. 230-235
    連結:
  14. Chao-Chung Peng and Chieh-Li Chen, 2011, “Stability Guaranteed Sliding Controller Design Subject to Low Gain Switching”, IEEE International Conference on Fluid Power and Mechatronics (FPM), Beijing, China, Accepted (EI).
    連結:
  15. Samuel da Silva and Vilcente L. Junior, 2006, ”Active Flutter Suppression in a 2-D Airfoil Using Linear Matrix Inequalities Techniques”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.28, no.1
    連結:
  16. Theodore Theodorsen, 1940, “General Theory of Aerodynamic Instability and the Mechanism of Flutter.”, NACA Report No. 496
    連結:
  17. M. Tadi, 2003, “State-Dependent Riccati Equation for Control of Aeroelastic Flutter”, Journal of Guidance, Control, And Dynamic, Vol. 26, No.6, pp.914-917
    連結:
  18. 彭兆仲, 2009, “逆步式順滑控制器設計及其於機械系統循軌與追蹤控制之應用”, 國立成功大學航空太空工程學系博士論文
    連結:
  19. John D. Anderson, Jr. , 2007, “Fundamentals of Aerodynamics”, McGraw-Hill, New York, pp. 297-326
  20. S. Boyd, L. ElGhaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inwqualities in System and Control Theory”, PA: SIAM, 1994
  21. Max Demenkov, Mikhail Goman, 2008, ”Suppressing Aeroelastic Vibrations via Stability Region Maximization and Numerical Continuation Techniques”, UKACC International Control Conference, Manchester
  22. Christopher Edwards and Sarah K Spurgeon. , 1998, ”Sliding Mode Control :Theory and Applications”, Taylor & Francis, London
  23. Y. C. Fung, 1955, “An Introduction to the Theory of Aeroelasticity”, Wiley, New York, pp.186-215
  24. Khalil, Hassan K., 1996,”Nonlinear Systems”, Prentice Hall, New Jersey
  25. Jean-Jacques E. Slotine, Weiping Li., 1991,”Applied Nonlinear Control”, Prentice Hall, New Jersey, pp.40-95
  26. Theodore Theodorsen and I.E. Garrick, 1940, “Mechanism of flutter a theoretical and experimental investigation of the flutter problem.”, NACA Report No. 685
  27. 陳永平, 張浚林, 2006, “可變結構控制設計(修訂版)”, 全華科技圖書股份有限公司