Title

供應鏈長鞭效應、敏捷力與績效關聯性之研究

Translated Titles

A Research into the Relationship between Bullwhip Effect, Agility and Performance in Supply Chain System

DOI

10.6827/NFU.2014.00157

Authors

楊子豪

Key Words

供應鏈 ; 長鞭效應 ; 敏捷力 ; 模糊德爾菲法 ; 偏最小平方法 ; 貝氏網路 ; 決策實驗法 ; Supply Chain ; Bullwhip Effect ; Agility ; Fuzzy Delphi Method ; Partial Least Squares ; Bayesian Network ; Decision Making Trial and Evaluation Laboratory

PublicationName

虎尾科技大學工業工程與管理研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

張洝源

Content Language

繁體中文

Chinese Abstract

現今在各個產業中,供應鏈之管理與運用日益普遍,其存貨及訂單的正確與穩定性是企業最重視的策略,然而,供應鏈管理存在長鞭效應之問題,對供應鏈管理的效率與績效產生難以克服之影響。在市場快速變化及全球化競爭的環境下,企業為了在激烈競爭且多變環境下求生存,必須擬定有效的供應鏈策略。本研究之目的在於探討長鞭效應在供應鏈管理中產生的影響,並分析供應鏈敏捷力是否對供應鏈管理產生效益。藉由供應鏈之長鞭效應、敏捷力以及績效間的關係,進而解析敏捷力是否對於長鞭效應在績效產生負面影響有緩解之作用。本研究以台灣前500大企業為實證研究對象,探討台灣製造業供應鏈之長鞭效應、敏捷力與績效之關聯性。 本研究先藉由文獻為基礎及專家的訪談整理彙整造成長鞭效應的因子以及供應鏈敏捷力與績效因子,並藉由關鍵因素之分析,評估長鞭效應因素對於供應鏈績效影響的重要性程度,以及因素間的相互影響關係,進而有效管理這些因素對於供應鏈長鞭效應產生之衝擊。首先,藉由模糊德爾菲法(Fuzzy Delphi Method,FDM)篩選長鞭效應因素與敏捷力因素,並使用偏最小平方法(Partial Least Squares,PLS)的結構方程模式(Structural Equation Modeling, SEM)建立其構面與因素間的關係進行第二次因素篩選,並驗證本研究四大假設是否成立。後續運用貝氏網路分析法(Bayesian Network, BN)來建構長鞭效應、敏捷力與績效之因素間關聯模型,再透過偏最小平方法(PLS)與決策實驗法(Decision Making Trial and Evaluation Laboratory, DEMATEL)來驗證關聯模型。 藉由PLS-SEM模型之驗證,本研究得到以下之結論:敏捷力對長鞭效應有顯著的負面影響;敏捷力對績效有顯著的正面影響;以及長鞭效應對績效有顯著的負面影響;另外,敏捷力與長鞭效應對績效影響之調節效果之檢定,結果顯示其交互效果則是不具顯著性而不成立。此外,本研究並利用貝氏網路與DEMATEL針對長鞭效應、敏捷力與績效之相關元素之間的相互關聯性加以驗證,並依據關聯模型進行分析,藉以判別提升企業績效之最具關鍵性因素,所得之關鍵因素為供應商交貨時間之延滯(A12)、供應商到貨量不穩定(A11)、以及缺貨問題(A16),上述因素的將直接影響其它因子,並對抑制長鞭效應發生及敏捷力與企業績效的提升亦產生顯著之影響。

English Abstract

Today in various industries, supply chain management and application have become increasingly common for the correctness and stability of inventory and order are the key strategies most industries attach importance to; however, impacts caused by the bullwhip effect, which exists in all supply chains create difficult obstacles for managerial efficiency and performance to take place. In the face of changeable market and global competitions, industries must develop effective supply chain strategies in order to survive in such highly competitive and rapidly changing environment. The purpose of this study lies in exploring impacts caused by the bullwhip effect in supply chains and analyzing whether supply chain agility brings effects to supply chain management. And furthermore, to analyze whether agility can soothe and resolve negative impacts caused by the bullwhip effect in terms of performance by examining correlations among the bullwhip effect in supply chains, agility, and performance. In this study, Taiwan’s top 500 companies were used as the empirical subject to explore correlations among the bullwhip effect in supply chains, agility, and performance within the manufacturing industry in Taiwan. In this study, factors of the bullwhip effect, supply chain agility, and performance were compiled based on literature reviews and interviews with experts. Upon the analysis of key factors, the degree of importance of the bullwhip effect in terms of supply chain performance as well as the intercorrelation among these factors were estimated, so that impacts caused by these factors in terms of the bullwhip effect in supply chains could be managed effectively. First of all, the bullwhip effect and agility factors were selected using the fuzzy Delphi method (FDM), and then a dimension and correlations among these factors were established using partial least squares (PLS) in order to carry out the second selection of factors as well as to verify whether the study’s four assumptions are valid. Next, a model of correlations among the bullwhip effect, agility, and performance factors was established using Bayesian network (BN) and subsequently verified using PLS and decision making trail and evaluation laboratory (DEMATEL). Based on the verification of PLS-SEM model, findings of this study are as follows: agility has a significant negative impact on the bullwhip effect; ability has a significant positive impact on performance; and the bullwhip effect has a significant negative impact on performance; moreover, according to results derived from the examination on moderating effect of impacts of agility and the bullwhip effect on performance, there is no significant or valid intercorrelation among these factors. In addition, a further verification was implemented in accordance with an intercorrelation among the bullwhip effect, agility, and performance factors, and an analysis was conducted to determine key factors that can improve business performance based on the correlation model. In this study, the Bayesian Networks Analysis and DEMATEL were adopted to verify the interconnectedness among factors related to bullwhip effect, agility, and performance. An analysis was conducted based on the relational model in order to determine the most crucial factors contributing to enhanced enterprise performance. The crucial factors obtained in this study include: supplier’s delivery time delay (A12), supplier’s volume instability (A11), and out-of-stock problem (A16). These factors should first be improved and prevented, while the condition of the above factors will also affect the performance of other factors and whether they can suppress occurrences of the bullwhip effect and agility and enhance enterprise performance.

Topic Category 管理學院 > 工業工程與管理研究所
工程學 > 工程學總論
社會科學 > 管理學
Reference
  1. 2.尹以修(2004),軍事資訊系統計畫建案風險管理之研究,臺灣大學商學研究所,碩士論文。
    連結:
  2. 4.吳怡萱(2014),應用PLS與DANP改善機場服務品質缺口之研究-以桃園機場為例,淡江大學運輸管理學系碩士班,碩士論文。
    連結:
  3. 5.李大仁(2007),精練生產、敏捷製造與大量客製化的做法與其對製造績效的影響,大同大學事業經營學系(所),碩士論文。
    連結:
  4. 7.邱皓政 (2011), “當 PLS 遇上 SEM: 議題與對話”, αβγ 量化研究學刊, Vol.3, No.1, pp.20-53.
    連結:
  5. 9.莊錦賜, &林芳如(2011),“台灣顧客滿意指數模型之研究-以中醫診所為例, 嶺東學報, 第29期, 19-55.”
    連結:
  6. 10.陳村亙(2009),部落客知識分享行為之研究,朝陽科技大學資訊管理系碩士班,碩士論文。
    連結:
  7. 11.陳俊佑(2013),建構中小企業營運風險、製造策略及績效之關聯模型,虎尾科技大學工業工程與管理研究所,碩士論文。
    連結:
  8. 12.陳毅立(2012),供應商關係管理、關係品質與合作意願關係之研究,嶺東科技大學高階主管企管碩士在職專班,碩士論文。
    連結:
  9. 13.楊勝凱(2011),運用類神經網路與時間序列分析建構台灣50股價預測模型,國立臺北大學企業管理學系,碩士論文。
    連結:
  10. 15.劉士銘(2013),應用多屬性決策分析第三方物流敏捷供應商之評選,虎尾科技大學工業工程與管理研究所,碩士論文。
    連結:
  11. 18.顏啟芳(2011),內在及外在動機對行動英語學習持續使用意願之影響,國立臺北科技大學技術及職業教育研究所,碩士論文。
    連結:
  12. 19.Abbasi, M., Rajabi, M., Iravani, M., & Jannesari, H. (2013), “A social work study on impact of gender, marital status and employment status on internet addiction”, Management Science Letters, Vol.3, No.3, pp.1019-1024.
    連結:
  13. 20.Agrawal, S., Sengupta, R.N., & Shanker, K. (2009), “Impact of information sharing and lead time on bullwhip effect and on-hand inventory”, European Journal of Operational Research, Vol.192, No.2, pp.576-593.
    連結:
  14. 21.Aitken, J., Christopher, M., & Towill, D. (2002), “Understanding, implementing and exploiting agility and leanness”, International Journal of Logistics, Vol.5, No.1, pp.59-74.
    連結:
  15. 25.Bouissou, M., Martin, F., & Ourghanlian, A. (1999), Assessment of a Safety Critical System Including Software: a Bayesian Belief Network for Evidence Sources. Reliability and Maintainability Symposium (RAMS‘99). Washington.
    連結:
  16. 26.Buchmeister, B. (2008), “Investigation of the bullwhip effect using spreadsheet simulation”, International Journal of Simulation Modelling, Vol.7, No.1, pp.29-41.
    連結:
  17. 27.Burgess, T.F. (1994), “Making the leap to agility: defining and achieving agile manufacturing through business process redesign and business network redesign”, International Journal of Operations & Production Management, Vol.14, No.11, pp.23-34.
    連結:
  18. 30.Chakravarthy, B.S. (1986), “Measuring strategic performance”, Strategic management journal, Vol.7, No.5, pp.437-458.
    連結:
  19. 31.Chang, A.-Y., Yu, H.-F., & Yang, T.-H. (2013), “A study of the key factors contributing to the bullwhip effect in the supply chain of the retail industry”, Journal of Industrial and Production Engineering, Vol.30, No.7, pp.433-442.
    連結:
  20. 32.Chang, P.L., Hsu, C.W., & Chang, P.C. (2011), “Fuzzy Delphi method for evaluating hydrogen production technologies”, International Journal of Hydrogen Energy, Vol.36, No.21, pp.14172-14179.
    連結:
  21. 33.Chen, F., Drezner, Z., Ryan, J.K., & Simchi-Levi, D. (2000a), “Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information”, Management Science, Vol.46, No.3, pp.436-443.
    連結:
  22. 34.Chen, F., Ryan, J.K., & Simchi-Levi, D. (2000b), “The impact of exponential smoothing forecasts on the bullwhip effect”, Naval Research Logistics, Vol.47, No.4, pp.269-286.
    連結:
  23. 35.Cheng, C. C., Chen, C. T., Hsu, F. S., & Hu, H. Y. (2012). Enhancing service quality improvement strategies of fine-dining restaurants: New insights from integrating a two-phase decision-making model of IPGA and DEMATEL analysis. International Journal of Hospitality Management, 31(4), 1155-1166.
    連結:
  24. 36.Chin, W.W. (1998), “The partial least squares approach to structural equation modeling”, Modern Methods for Business Research, Vol.295, No.2, pp.295-336.
    連結:
  25. 37.Christopher, M. (2000), “The agile supply chain: competing in volatile markets”, Industrial Marketing Management, Vol.29, No.1, pp.37-44.
    連結:
  26. 38.Christopher, M. (1992) Logistics and Supply Chain Management, Pitmans,London,UK..
    連結:
  27. 39.Dalkey, N., & Helmer, O. (1963), “An experimental application of the Delphi method to the use of experts”, Management Science, Vol.9, No.3, pp.458-467.
    連結:
  28. 40.De Oliveira, M.A., Possamai, O., Dalla Valentina, L.V., & Flesch, C.A. (2012), “Applying Bayesian networks to performance forecast of innovation projects: A case study of transformational leadership influence in organizations oriented by projects”, Expert Systems with Applications, Vol.39, No.5, pp.5061-5070.
    連結:
  29. 41.Delaney, J.T., & Huselid, M.A. (1996), “The impact of human resource management practices on perceptions of organizational performance”, Academy of Management Journal, Vol.39, No.4, pp.949-969.
    連結:
  30. 43.Fornell, C., & Bookstein, F. L. (1982), “Two structural equation models: LISREL and PLS applied to consumer exit-voice theory.” Journal of Marketing research, Vol.19, pp.440-452.
    連結:
  31. 44.Forrester, J.W., (1961), Industrial Dynamics, (Vol. 2), MIT press Cambridge, MA.
    連結:
  32. 48.Gunasekaran, A. (1998), “Agile manufacturing: enablers and an implementation framework”, International Journal of Production Research, Vol.36, No.5, pp.1223-1247.
    連結:
  33. 49.Heckerman, D., Geiger, D., & Chickering, D.M. (1995), “Learning Bayesian networks: The combination of knowledge and statistical data”, Machine learning, Vol.20, No.3, pp.197-243.
    連結:
  34. 50.Hertenstein, J.H., & Platt, M.B. (2000), “Performance measures and management control in new product development”, Accounting Horizons, Vol.14, No.3, pp.303-323.
    連結:
  35. 51.Highsmith, J., (2002), Agile Software Development Ecosystems, Addison-Wesley Longman Publishing Co., Inc.
    連結:
  36. 54.Hsu, Y.L., Lee, C.H., & Kreng, V. (2010), “The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection”, Expert Systems with Applications, Vol.37, No.1, pp.419-425.
    連結:
  37. 55.Ishikawa, H., Ishimi, K., Sugiura, M., Sowa, A., & Fujiwara, N. (1993), “Kinetics and mechanism of enzymatic hydrolysis of gelatin layers of X-ray film and release of silver particles”, Journal of Fermentation and Bioengineering, Vol.76, No.4, pp.300-305.
    連結:
  38. 56.Jeou-Shyan, H., Hsuan, H., Chih-Hsing, L., Lin, L., & Chang-Yen, T. (2011), “Competency analysis of top managers in the Taiwanese hotel industry”, International Journal of Hospitality Management, Vol.30, No.4, pp.1044-1054.
    連結:
  39. 57.Kardaras, D. K.,Karakostas B. &Mamakou X. J. (2013),“Content presentation personalisation and mediaadaptation in tourism web sites using fuzzy Delphimethod and fuzzy cognitive maps,” Expert Systems with Applications, Vol.40, N0.6, pp. 2331–2342
    連結:
  40. 58.Kelle, P., & Milne, A. (1999), “The effect of (s, S) ordering policy on the supply chain”, International Journal of Production Economics, Vol.59, No.1, pp.113-122.
    連結:
  41. 59.Kidd, P.T., (1995), Agile Manufacturing: Forging New Frontiers, Addison-Wesley Longman Publishing Co., Inc.
    連結:
  42. 60.Kinney, M.R., & Wempe, W.F. (2002), “Further evidence on the extent and origins of JIT's profitability effects”, The Accounting Review, Vol.77, No.1, pp.203-225.
    連結:
  43. 61.Lauritzen, S.L., Thiesson, B., & Spiegelhalter, D.J. (1994). Diagnostic Systems by Model Selection: A Case Study, Lecture Notes in Statistics, 89, Springer, pp.143-152.
    連結:
  44. 62.Lee, A.H.I., Wang, W.M., & Lin, T.Y. (2010), “An evaluation framework for technology transfer of new equipment in high technology industry”, Technological Forecasting and Social Change, Vol.77, No.1, pp.135-150.
    連結:
  45. 64.Lee, H.L., Padmanabhan, V., & Whang, S. (1997b), “Information distortion in a supply chain: the bullwhip effect”, Management Science, Vol.43, No.4, pp.546-558.
    連結:
  46. 66.Levi, D.S., Kaminsky, P., and Levi, E.S., (2000), Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, McGraw-Hill.
    連結:
  47. 67.Merschmann, U., & Thonemann, U.W. (2011), “Supply chain flexibility, uncertainty and firm performance: an empirical analysis of German manufacturing firms”, International Journal of Production Economics, Vol.130, No.1, pp.43-53.
    連結:
  48. 68.Metters, R. (1997), “Quantifying the bullwhip effect in supply chains”, Journal of Operations Management, Vol.15, No.2, pp.89-100.
    連結:
  49. 69.Metz, P. J. (1998),“Demystifying supply chain management”, Supply Chain Management Review, (Winter 1998),pp.46-55.
    連結:
  50. 73.Niranjan, T.T., Wagner, S.M., & Aggarwal, V. (2011), “Measuring information distortion in real-world supply chains”, International Journal of Production Research, Vol.49, No.11, pp.3343-3362.
    連結:
  51. 74.Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., & Hart, B.T. (2007), “Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment”, Environmental Modelling & Software, Vol.22, No.8, pp.1140-1152.
    連結:
  52. 78.Sarkis, J., Zhu, Q., & Lai, K.-h. (2011), “An organizational theoretic review of green supply chain management literature”, International Journal of Production Economics, Vol.130, No.1, pp.1-15.
    連結:
  53. 79.Sharifi, H., & Zhang, Z. (1999), “A methodology for achieving agility in manufacturing organisations: An introduction”, International Journal of Production Economics, Vol.62, No.1, pp.7-22.
    連結:
  54. 80.Shi, L., LI, Z.-l., YU, T., & LI, J.-p. (2011), “Model of hot metal silicon content in blast furnace based on principal component analysis application and partial least square”, Journal of Iron and Steel Research, International, Vol.18, No.10, pp.13-16.
    連結:
  55. 82.Sterman, J.D. (1989), “Misperceptions of feedback in dynamic decision making”, Organizational Behavior and Human Decision Processes, Vol.43, No.3, pp.301-335.
    連結:
  56. 84.Sun, L., & Shenoy, P.P. (2007), “Using Bayesian networks for bankruptcy prediction: Some methodological issues”, European Journal of Operational Research, Vol.180, No.2, pp.738-753.
    連結:
  57. 85.Swafford, P.M., Ghosh, S., & Murthy, N. (2008), “Achieving supply chain agility through IT integration and flexibility”, International Journal of Production Economics, Vol.116, No.2, pp.288-297.
    連結:
  58. 86.Swafford, P.M., Ghosh, S., & Murthy, N. (2006a), “The antecedents of supply chain agility of a firm: scale development and model testing”, Journal of Operations Management, Vol.24, No.2, pp.170-188.
    連結:
  59. 90.Tseng, M.L. (2009), “Using the extension of DEMATEL to integrate hotel service quality perceptions into a cause–effect model in uncertainty”, Expert systems with applications, Vol.36, No.5, pp.9015-9023.
    連結:
  60. 92.Tzeng, G.H., Chiang, C.H., & Li, C.W. (2007), “Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL”, Expert Systems with Applications, Vol.32, No.4, pp.1028-1044.
    連結:
  61. 93.Van de Ven, A.H., & Ferry, D.L., (1980), Measuring and Assessing Organizations, Wiley New York.
    連結:
  62. 96.Vinodh, S., Kumar, V.U., & Girubha, R.J. (2012), “Thirty-criteria-based agility assessment: a case study in an Indian pump manufacturing organisation”, The International Journal of Advanced Manufacturing Technology, Vol.63, No.9-12, pp.915-929.
    連結:
  63. 97.Wang, W., & Chai, Y. (2002). “Distribution requirements planning for agile supply chain management”,American Control Conference, Proceedings of the 2002 (Vol. 1, pp. 352-357): IEEE.
    連結:
  64. 98.Ward, P.T., Duray, R., Keong Leong, G., & Sum, C.-C. (1995), “Business environment, operations strategy, and performance: an empirical study of Singapore manufacturers”, Journal of Operations Management, Vol.13, No.2, pp.99-115.
    連結:
  65. 99.Weber, P., Medina-Oliva, G., Simon, C., & Iung, B. (2012), “Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas”, Engineering Applications of Artificial Intelligence, Vol.25, No.4, pp.671-682.
    連結:
  66. 100.Winston, W.L.(1997), Operations Research: Applications and Algorithms, California : Duxbury Press.
    連結:
  67. 101.Wold, H. (1975), “Soft modeling by latent variables: the nonlinear iterative partial least squares approach”, Perspectives in probability and statistics, papers in honour of MS Bartlett, pp.520-540.
    連結:
  68. 103.Wu, W.-W. (2008), “Choosing knowledge management strategies by using a combined ANP and DEMATEL approach”, Expert Systems with Applications, Vol.35, No.3, pp.828-835.
    連結:
  69. 104.Wu, W.W. (2010), “Linking Bayesian networks and PLS path modeling for causal analysis”, Expert Systems with Applications, Vol.37, No.1, pp.134-139.
    連結:
  70. 108.Zhang, D.Z. (2011), “Towards theory building in agile manufacturing strategies—Case studies of an agility taxonomy”, International Journal of Production Economics, Vol.131, No.1, pp.303-312.
    連結:
  71. 109.Zhu, Y., Liu, D., Chen, G., Jia, H., & Yu, H. (2013), “Mathematical modeling for active and dynamic diagnosis of crop diseases based on Bayesian networks and incremental learning”, Mathematical and Computer Modelling, Vol.58, No.3, pp.514-523.
    連結:
  72. 1.吳萬益 (1996), “中美日在台企業經營環境, 組織結構及策略運作互動關係之研究, 管理科學學報, 第十三卷, 第一期”.
  73. 3.王富恩(2003),長鞭效應在不同需求型態下關鍵影響因素之探討,國防管理學院後勤管理研究所,碩士論文。
  74. 6.邱乾銘(2004),供應鏈長鞭效應之探討,國立高雄第一科技大學運輸倉儲營運所,碩士論文。
  75. 8.莊亞航(2009),探討實證醫學對醫療知識管理能力及醫療價值創新績效的影響,嘉南藥理科技大學醫療資訊管理研究所,碩士論文。
  76. 14.廖錚圻(2006),應用蟻群最佳化求解敏捷製造排程問題,國立臺灣科技大學工業管理系,碩士論文。
  77. 16.蔡惠芬(2001),供應鏈長鞭效應之降低─以預先訂購模式為例,國立中正大學應用數學研究所,碩士論文。
  78. 17.賴建成(2004),企業敏捷力績效評估方法,國立清華大學工業工程與工程管理學系,碩士論文。
  79. 22.Balsmeier, P. W., & Voisin, W. J. (1996), Supply chain management: a time-based strategy. Industrial Management, Vol. 38, No. 5, pp.24-27.
  80. 23.Baramichai, M. (2007), “Customizing supply chain using the agile supply chain portfolio analysis”, The Agile Supply Chain Portofolio Analysis, Vol.10527, pp.10578..
  81. 24.Bititci, U.S., Mendibil, K., Martinez, V., & Albores, P. (2005), “Measuring and managing performance in extended enterprises”, International Journal of Operations & Production Management, Vol.25, No.4, pp.333-353.
  82. 28.Carter, J.R., & Ferrin, B.G. (1995), “The impact of transportation costs on supply chain management”, Journal of Business Logistics, Vol.16, pp.189-189.
  83. 29.Čater, T., & Pučko, D., (2005), “How competitive advantage influences firm performance: the case of Slovenian firms”, Economic and Business Review, Vol. 7, No. 2, pp.119–135..
  84. 42.Dubois, D., Ostasiewicz, W., & Prade, H. (2000),“Fuzzy sets: history and basic notions”, In Fundamentals of Fuzzy Sets pp.21-124. Springer US.
  85. 45.Germani, C., Venturini, R., Ludwig, M., Daganzo-Eusebio, E., D'Addio, S., & Gabriele, A. (2012), “Ka-band SAR interferometer.” In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International pp.5598-5601. IEEE.
  86. 46.Preiss, K., Goldman, S. L., & Nagel, R. N. (1996), Cooperate to Compete: Building Agile Business Relationships, New York: Van Nostrand Reinhold.
  87. 47.Green, R., Leff, H., Mulkern, V., and Newman, F. (1995), “Performance indicators for a consumer-oriented mental health report card: Literature review and analysis”, Human Services Research Institute, Cambridge, MA: The Evaluation Center@ HSRI.
  88. 52.Hooley, G., Cox, T., Fahy, J., Shipley, D., Beracs, J., Fonfara, K., & Snoj, B. (2000), “Market orientation in the transition economies of central europe:: tests of the narver and slater market orientation scales”, Journal of Business Research, Vol.50, No.3, pp.273-285.
  89. 53.Houlihan, J.B. (1985), “International supply chain management”, International Journal of Physical Distribution & Logistics Management, Vol.15, No.1, pp.22-38.
  90. 63.Lee, H.L., Padmanabhan, V., & Whang, S. (1997a), “The bullwhip effect in supply chains”, Sloan Management Review, Vol.38, No.3, pp.93-102.
  91. 65.Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011), “On the use of partial least squares path modeling in accounting research”, International Journal of Accounting Information Systems, Vol.12, No.4, pp.305-328.
  92. 70.Mike, D., Venu, N., & Florian, W. (2012), “Agile operations for volatile times”, McKinsey Quarterly, Vol.3, pp.126-131.
  93. 71.Muckstadt, J.A., Murray, D.H., Rappold, J.A., & Collins, D.E. (2001), “Guidelines for collaborative supply chain system design and operation”, Information Systems Frontiers, Vol.3, No.4, pp.427-453.
  94. 72.Naim, M.M., & Gosling, J. (2011), “On leanness, agility and leagile supply chains”, International Journal of Production Economics, Vol.131, No.1, pp.342-354.
  95. 75.Richards, C.W. (1996), “Agile manufacturing: beyond lean?”, Production and Inventory Management Journal, Vol.37, pp.60-64.
  96. 76.Russell, S., & Norvig, P. (1995), Introduction to Artificial Intelligence, Courier Dover Publications.
  97. 77.Sahin, F. (2000), “Manufacturing competitiveness: Different systems to achieve the same results”, Production and Inventory Management Journal, Vol.41, No.1, pp.56-65.
  98. 81.Spearman, M.L., & Hopp, W.J. (1996), “Factory Physics: Foundations of Manufacturing Management”, Factory Physics, Irwin, Chicago, IL.
  99. 83.Stevens, G.C. (1989), “Integrating the supply chain”, International Journal of Physical Distribution & Logistics Management, Vol.19, No.8, pp.3-8.
  100. 87.Swafford, P.M., Ghosh, S., & Murthy, N.N. (2006b), “A framework for assessing value chain agility”, International Journal of Operations &Production Management, Vol.26, No.2, pp.118-140.
  101. 88.Tipmontian, J., Rao, K.S., & Rajmohan, M. (2012), “Integrating fuzzy Delphi method and analytic hierarchy process for the selection of post-harvest technology”, European Journal of Scientific Research, Vol.80, No.2, pp.244-259.
  102. 89.Towill, D.R., Naim, M.M., & Wikner, J. (1992), “Industrial dynamics simulation models in the design of supply chains”, International Journal of Physical Distribution & Logistics Management, Vol.22, No.5, pp.3-13.
  103. 91.Turban, E., Leidner, D., McLean, E., & Wetherbe, J., (2008), Information Technology for Management,, John Wiley & Sons.
  104. 94.Van Hoek, R.I. (2001), “Epilogue-moving forward with agility”, International Journal of Physical Distribution & Logistics Management, Vol.31, No.4, pp.290-301.
  105. 95.Vastag, G., Kasarda, J.D., & Boone, T. (1994), “Logistical support for manufacturing agility in global markets”, International Journal of Operations & Production Management, Vol.14, No.11, pp.73-85.
  106. 102.Woo, C. Y., & Willard, G., (1983). “Performance representation in business policy research: Discussion and recommendation”, 23rd Annual National Meetings of the Academy of Management, Dallas.
  107. 105.Xu, K., Dong, Y., & Evers, P.T. (2001), “Towards better coordination of the supply chain”, Transportation Research Part E: Logistics and Transportation Review, Vol.37, No.1, pp.35-54.
  108. 106.Youssef, M.A. (1992), “Agile manufacturing: a necessary condition for competing in global markets”, Industrial Engineering, Vol.24, No.12, pp.18-20.
  109. 107.Yusuf, Y.Y., Sarhadi, M., & Gunasekaran, A. (1999), “Agile manufacturing:: The drivers, concepts and attributes”, International Journal of production economics, Vol.62, No.1, pp.33-43.
Times Cited
  1. 吳振維(2016)。供應鏈風險、長鞭效應、精實與績效關係之研究。虎尾科技大學工業管理系工業工程與管理碩士班學位論文。2016。1-108。
  2. 卓政憲(2018)。因應長鞭效應之關鍵供應鏈敏捷力。虎尾科技大學工業管理系工業工程與管理碩士班學位論文。2018。1-101。