Title

河道三維高含砂水流沉滓運移模式發展與應用

Translated Titles

Development and Application of a Three-Dimensional Model for Hyper-Concentrated Flow and Sediment Transport in Alluvial Channels

DOI

10.6842/NCTU.2012.00733

Authors

鍾浩榮

Key Words

高含砂水流 ; 三維模式 ; 流變關係 ; 沉滓運移 ; 懸浮載 ; 底床載 ; hyper-concentrated flow ; three-dimensional model ; rheological relation ; sediment transportation ; suspended load ; bed load

PublicationName

交通大學土木工程系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

楊錦釧;謝德勇

Content Language

繁體中文

Chinese Abstract

為能探討高含砂水流運移現象並提供實際規劃應用參考,本研究採水平正交曲線、垂向sigma座標系統之靜水壓淺水波方程式,發展一三維高含砂水流沉滓運移數值模式。控制方程式以水平垂直分離概念,分為水深平均二維方程式與流速差異量方程式,搭配三維連續方程式求解三維流場。沉滓運移控制方程式分為三維質量傳輸方程式、作用層連續方程式與底床連續方程式。高含砂效應考量二次式流變關係反應非牛頓流體特性,以狀態函數反應含砂濃度對密度之影響,並採用考慮高含砂效應之懸浮載與底床載經驗式,反應高含砂水流沉滓運移與濃度變化。 高含砂水流及沉滓運移模式應用上需率定之相關參數甚多,因此首先進行模式參數敏感度分析,探討影響水理、濃度與底床沖淤模擬結果重要參數之權重。另研選數組高含砂水流實驗案例進行模式測試,探討水理及沉滓運移特性。探討重點包含:流變關係之阻力使潰壩湧波移動一段距離後發生停止運移之現象;彎道水位超高變化受流變關係之影響;流變關係與密度對底床載運移量之影響;並釐清落淤速度與剪力速度之比值,可判斷兩種紊流擴散係數分布於模擬三維懸浮載濃度分布之適用性。最後以實際應用角度,建立高含砂水流效應下,定床水深、流速與底床剪力相對於清水流之增量及以動床觀點探討底床載對底床沖淤之影響,以簡易關係式之型式供工程規劃設計應用之參考。

English Abstract

To investigate the transport behavior of hyper-concentrated flow and as a result to provide as a reference for engineering planning of practical cases, a hydrostatic three-dimensional model for hyper-concentrated flow and sediment transport in alluvial channels was developed in this study. By following the vertical and horizontal splitting concept (VHS), the shallow water flow governing equations were split into two parts including the depth-averaged two-dimensional equations and velocity defect equation in vertical direction. The former one was transformed into orthogonal curvilinear coordinate system; the latter one was derived as the form of sigma coordinate. Incorporated with continuity equation, the three-dimensional velocity field can therefore be solved. Sediment transport governing equations include three-dimensional mass transport equation, active-layer continuity equation, and bed-layer continuity equation. The effects of hyper-concentrated flow were treated as follows: a quadratic rheological relation was used to reflect the characteristics of non-Newtonian fluid; a state function was used to reflect the influence of concentration to density; the empirical suspended- and bed-load formulae with hyper-concentrated flow effect were used for the sediment transport computation. Sensitivity analysis was performed first to identify the weighting of parameters to be calibrated in the model. The influence extent induced by the parameters on water flow, suspended sediment concentration, and bed evolution, thereafter were examined and justified. To further investigate the characteristics of hyper-concentrated flow and sediment transport, several sets of experimental cases collected from the literatures were simulated. The case of dam-break wave propagation of non-Newtonian fluid was simulated to demonstrate the limit of traveling distance of hyper-concentrated flow. A channel bend flow experiment with 40% volume concentration of sediment was studied to investigate the effect of hyper-concentrated flow on super-elevation of water surface. A criterion of ratio of falling velocity and shear velocity was numerically examined and justified based on experimental data as a baseline for choosing the proper distribution type of turbulent diffusivity for simulation of suspended-load movement. At last, simple and concise regression relations for the increments of water depth, velocity, bed shear stress, and bed change caused by the hyper-concentrated flow were established for application of engineering planning and design.

Topic Category 工學院 > 土木工程系所
工程學 > 土木與建築工程
Reference
  1. 王志賢(2007) 「泥砂顆粒組成對黏性土石流體流變參數影響之研究」,國立成功大學水利與海洋工程學系博士學位論文。
    連結:
  2. 莊巧巧(2011)「高含砂水流流動室內試驗及類神經網路於流變參數推估之應用」,國立中興大學土木工程學系碩士學位論文。
    連結:
  3. 洪聖翔(2011)「正交曲線座標擬似三維水理模式於彎道水流之模擬研究」,國立交通大學土木工程學系碩士學位論文。
    連結:
  4. Armento MC, Genevois R and Tecca PR (2008) Comparison of numerical models of two debris flows in the Cortina d' Ampezzo area, Dolomites, Italy. Landslides 5:143-150.
    連結:
  5. Blumberg AF and Mellor GL (1983) Diagnostic and Prognostic Numerical Circulation Studies of the South-Atlantic Bight. J Geophys Res-Oc Atm 88:4579-4592.
    連結:
  6. Canuti P, Casagli N, Catani F and Falorni G (2002) Modeling of the Guagua Pichincha volcano (Ecuador) lahars. Phys Chem Earth 27:1587-1599.
    連結:
  7. Cao ZX, Pender G and Carling P (2006) Shallow water hydrodynamic models for hyperconcentrated sediment-laden floods over erodible bed. Adv Water Resour 29:546-557.
    連結:
  8. Cellino M and Graf WH (1999) Sediment-laden flow in open-channels under noncapacity and capacity conditions. J Hydraul Eng-Asce 125:455-462.
    連結:
  9. Cetina M, Rajar R, Hojnik T, Zakrajsek M, Krzyk M and Mikos M (2006) Case study: Numerical simulations of debris flow below Stoze, Slovenia. J Hydraul Eng-Asce 132:121-130.
    連結:
  10. Chang C, Yang J and Tung Y (1993) Sensitivity and uncertainty analysis of a sediment transport model: a global approach. Stochastic Hydrology and Hydraulics 7:299-314.
    連結:
  11. Chen CS, Liu HD and Beardsley RC (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J Atmos Ocean Tech 20:159-186.
    連結:
  12. Chen SC and Peng SH (2006) Two-dimensional numerical model of two-layer shallow water equations for confluence simulation. Adv Water Resour 29:1608-1617.
    連結:
  13. Coleman NL (1970) Flume Studies of the Sediment Transfer Coefficient. Water Resour Res 6:801-809.
    連結:
  14. Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics 5:544-560.
    連結:
  15. Fang HW and Wang GQ (2000) Three-dimensional mathematical model of suspended-sediment transport. J Hydraul Eng-Asce 126:578-592.
    連結:
  16. French RH (1986) Open Channel Hydraulics, Water Resources Publications, LLC.
    連結:
  17. Garcia M and Parker G (1991) Entrainment of Bed Sediment into Suspension. J Hydraul Eng-Asce 117:414-435.
    連結:
  18. Gessler D, Hall B, Spasojevic M, Holly F, Pourtaheri H and Raphelt N (1999) Application of 3D mobile bed, hydrodynamic model. J Hydraul Eng-Asce 125:737-749.
    連結:
  19. Hsieh TY and Yang JC (2003) Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation. J Hydraul Eng-Asce 129:597-612.
    連結:
  20. Jin X and Kranenburg C (1993) Quasi?3D Numerical Modeling of Shallow?Water Circulation. Journal of Hydraulic Engineering 119:458-472.
    連結:
  21. Lardner RW and Cekirge HM (1988) A New Algorithm for 3-Dimensional Tidal and Storm-Surge Computations. Appl Math Model 12:471-481.
    連結:
  22. Leschziner MA and Rodi W (1979) Calculation of Strongly Curved Open Channel Flow. J Hydr Eng Div-Asce 105:1297-1314.
    連結:
  23. Lien HC, Hsieh TY, Yang JC and Yeh KC (1999) Bend-flow simulation using 2D depth-averaged model. J Hydraul Eng-Asce 125:1097-1108.
    連結:
  24. Liu KF and Huang MC (2006) Numerical simulation of debris flow with application on hazard area mapping. Computat Geosci 10:221-240.
    連結:
  25. Mellor GL, Ezer T and Oey LY (1994) The Pressure-Gradient Conundrum of Sigma Coordinate Ocean Models. J Atmos Ocean Tech 11:1126-1134.
    連結:
  26. Meselhe EA and Sotiropoulos F (2000) Three-dimensional numerical model for open-channels with free-surface variations. J Hydraul Res 38:115-121.
    連結:
  27. Molls T and Chaudhry MH (1995) Depth-Averaged Open-Channel Flow Model. J Hydraul Eng-Asce 121:453-465.
    連結:
  28. Naef D, Rickenmann D, Rutschmann P and McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazard Earth Sys 6:155-165.
    連結:
  29. Nezu I, Nakagawa H and Research IAfH (1993) Turbulence in Open-Channel Flows, Balkema.
    連結:
  30. Ni JR, Zhang HW, Xue A, Wieprecht S and Borthwick AGL (2004) Modeling of hyperconcentrated sediment-laden floods in Lower Yellow River. J Hydraul Eng-Asce 130:1025-1032.
    連結:
  31. O'Brien JS, Julien PY and Fullerton WT (1993) 2-Dimensional Water Flood and Mudflow Simulation. J Hydraul Eng-Asce 119:244-261.
    連結:
  32. Pastor M, Quecedo M, Gonzalez E, Herreros MI, Merodo JAF and Mira P (2004) Simple approximation to bottom friction for Bingham fluid depth integrated models. J Hydraul Eng-Asce 130:149-155.
    連結:
  33. Pirulli M (2010) On the use of the calibration-based approach for debris-flow forward-analyses. Nat Hazard Earth Sys 10:1009-1019.
    連結:
  34. Rickenmann D (1991) Hyperconcentrated Flow and Sediment Transport at Steep Slopes. J Hydraul Eng-Asce 117:1419-1439.
    連結:
  35. Ruether N, Singh JM, Olsen NRB and Atkinson E (2005) 3-D computation of sediment transport at water intakes. P I Civil Eng-Wat M 158:1-7.
    連結:
  36. Shu AP and Fei XJ (2008) Sediment transport capacity of hyperconcentrated flow. Sci China Ser G 51:961-975.
    連結:
  37. Sinha SK, Sotiropoulos F and Odgaard AJ (1998) Three-dimensional numerical model for flow through natural rivers. J Hydraul Eng-Asce 124:13-24.
    連結:
  38. Smart GM (1984) Sediment Transport Formula for Steep Channels. J Hydraul Eng-Asce 110:267-276.
    連結:
  39. Sosio R, Crosta GB and Frattini P (2007) Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surf Proc Land 32:290-306.
    連結:
  40. Spalding DB (1972) A novel finite difference formulation for differential expressions involving both first and second derivatives. International Journal for Numerical Methods in Engineering 4:551-559.
    連結:
  41. Spasojevic M and Holly FM (1990) 2-D Bed Evolution in Natural Watercourses - New Simulation Approach. J Waterw Port C-Asce 116:425-443.
    連結:
  42. Struiksma N, Olesen KW, Flokstra C and Devriend HJ (1985) Bed Deformation in Curved Alluvial Channels. J Hydraul Res 23:57-79.
    連結:
  43. Takahashi T (2006) Debris Flow: Mechanics, Prediction and Countermeasures, Taylor & Francis.
    連結:
  44. van Maren DS, Winterwerp JC, Wu BS and Zhou JJ (2009) Modelling hyperconcentrated flow in the Yellow River. Earth Surf Proc Land 34:596-612.
    連結:
  45. van Rijn L, van Rossum H and Termes P (1990) Field Verification of 2–D and 3–D Suspended?Sediment Models. Journal of Hydraulic Engineering 116:1270-1288.
    連結:
  46. van Rijn LC (1984) Sediment Transport .2. Suspended-Load Transport. J Hydraul Eng-Asce 110:1613-1641.
    連結:
  47. Wang KH (1994) Characterization of Circulation and Salinity Change in Galveston Bay. J Eng Mech-Asce 120:557-579.
    連結:
  48. Wright S and Parker G (2004) Flow resistance and suspended load in sand-bed rivers: Simplified stratification model. J Hydraul Eng-Asce 130:796-805.
    連結:
  49. Wu SJ, Yang JC and Tung YK (2011) Risk analysis for flood-control structure under consideration of uncertainties in design flood. Nat Hazards 58:117-140.
    連結:
  50. Wu WM, Rodi W and Wenka T (2000) 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng-Asce 126:4-15.
    連結:
  51. Yang CT, Molinas A and Wu BS (1996) Sediment transport in the Yellow River. J Hydraul Eng-Asce 122:237-244.
    連結:
  52. Ye J and McCorquodale JA (1997) Depth-averaged hydrodynamic model in curvilinear collocated grid. J Hydraul Eng-Asce 123:380-388.
    連結:
  53. Zeng J, Constantinescu G, Blanckaert K and Weber L (2008) Flow and bathymetry in sharp open-channel bends: Experiments and predictions. Water Resources Research 44.
    連結:
  54. Zeng J, Constantinescu G and Weber L (2010) 3D Calculations of Equilibrium Conditions in Loose-Bed Open Channels with Significant Suspended Sediment Load. J Hydraul Eng-Asce 136:557-571.
    連結:
  55. Zhang H, HUANG Y and Zhao L (2001) A mathematical model for unsteady sediment transport in the Lower Yellow River. 國際泥沙研究(英文版) 16:9.
    連結:
  56. 錢寧,萬兆惠(1983)「泥沙運動力學」,科學出版社,309。
  57. 郭朝雄(1984-1988)「濁水溪砂質(沖積扇)河段輸砂特性研究」,行政院國科會防災科技研究報告。
  58. 曹如軒(1987)「高含沙引水管道輸沙能力的數學模型」,水利學報(9),39。
  59. 張紅武,張清(1992)「黃河水流挾沙力的計算公式」人民黃河(11),7。
  60. 張紅武,江恩惠,白詠梅,邵蘇梅,張清,蘇曉東(1994),「黃河高含沙洪水模型的相似律」,河南科學技術出版。
  61. 劉峰,李義天(1997)「新的水流挾沙力計算公式」,長江科學院院報(3),17。
  62. 費祥俊,舒安平(1998)「多沙河流水流輸沙能力的研究」 水利學報(11),38。
  63. 黃遠東,張紅武,趙連軍,江恩惠(2003)「黃河下游平面二維非恆定輸砂數學模型I:模型方程與數值方法」,水動力學研究與進展(A)(18),No. 5。
  64. 謝德勇(2002) 「二維水理、污染傳輸及沉滓運移模式之研發與應用」,國立交通大學土木工程學系博士學位論文。
  65. 張益家(2005) 「二維彎道動床模式之發展研究」,國立交通大學土木工程學系碩士學位論文。
  66. 費祥俊與舒安平(2004) 「泥石流運動機理與災害防治」,北京,科學出版社。
  67. 經濟部水利署水利規劃試驗所(2007)「921 地震後濁水溪下游輸砂關係之試驗研究」。
  68. 經濟部水利署(2008)「高砂水流整治規劃條件檢討及計算模式研發應用」,水利規劃試驗所。
  69. 經濟部水利署(2011)「高含砂水流河道沖淤模擬及試驗研究」,水利規劃試驗所。
  70. Almquist CW and Holley ER (1985) Transverse Mixing in Meandering Laboratory Channels with Rectangular and Naturally Varying Cross Sections, Center for Research in Water Resources, Bureau of Engineering Research, Department of Civil Engineering, University of Texas.
  71. Ashida K, Takahashi T and Arai M (1981) Study on debris flow control: Debris flow in bends of rectangular section. Annuals Disaster Prevention Res Inst Kyoto Univ. 24B:13.
  72. de Vriend HJ and Koch FG (1977) Flow of water in a curved open channel with a fixed plane bed. Report on experimental and theoretical investigations, Delf Univ of Technology, Delf, The Netherlands R675-V M1415.
  73. Jobson HE and Sayre WW (1970) Vertical Transfer in Open Channel Flow. Journal of the Hydraulics Division 96.
  74. Richardson JF and Zaki WN (1954) Sedimentation and fluidisation: Part I. Chemical Engineering Research and Design 75, Supplement:S82-S100.
  75. Rouse H (1937) Modern conceptions of the mechanics of fluid turbulence. Trans Am Soc Civ Eng 102:463-554.
  76. Voellmy A (1955) Uber die Zerstorungskraft von Lawinen. Schweiz Bauztg 73212-285.
  77. Wright V and Krone R (1987) Topics in Hydraulic Modelling: Proceedings of Technical Session B, Twenty-second Congress, International Association for Hydraulic Research, Lausanne, Switzerland, Secretariat of the XXII International Congress, IAHR.
Times Cited
  1. 李承儒(2015)。RESED3D模式在水庫泥砂運移模擬應用之探討。交通大學土木工程系所學位論文。2015。1-62。 
  2. 許芳綺(2013)。環流傳輸係數對彎道汙染質側向傳輸之影響分析。交通大學土木工程系所學位論文。2013。1-63。 
  3. 陳蓉瑩(2013)。三維大渦模式在明渠水流之應用。交通大學土木工程系所學位論文。2013。1-81。 
  4. 黃建翔(2012)。水庫沉滓運移模擬邊界條件之影響分析。交通大學土木工程系所學位論文。2012。1-77。