Title

水庫沉滓運移模擬邊界條件之影響分析

Translated Titles

Effect of Boundary Conditions on Sediment Transport Modeling for Reservoirs

DOI

10.6842/NCTU.2012.00975

Authors

黃建翔

Key Words

三維模式 ; 沉滓運移 ; 水庫 ; 懸浮載 ; 底床載 ; 3D model ; sediment transport ; reservoir ; suspended load ; bed load

PublicationName

交通大學土木工程系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

楊錦釧;謝德勇

Content Language

繁體中文

Chinese Abstract

就水庫泥砂課題而言,泥砂入庫後之運移現象主要包含上游段粗顆粒造成之三角洲淤積行為,以及細顆粒入庫區後潛入形成異重流之運移行為。以數值模式的角度來看,沉滓運移現象模擬結果之準確度常受上游河床載邊界條件之設定,以及底床邊界再懸浮機制之影響。本研究之目的,即擬引用謝(2003)及鍾(2012)所發展之二維(RESED2D)以及三維(RESED3D)沉滓運移模式,探討上游及底床邊界條件對沉滓運移之影響。   為探討水庫沉滓運移模擬邊界條件之影響,分別先以三維模式模擬實驗案例,探討底床邊界條件對濃度傳遞的影響;再以二維模式模擬實驗以及現地案例,探討入流邊界條件對底床變遷的影響。最後,在簡單垂向入流濃度的假設條件下,將三維模式應用於石門水庫,以檢視模式之實用性。

English Abstract

In respect of sediment issue in reservoirs, the transport of sediment mainly involves with coarse particles in upstream that forms delta and fine articles in reservoirs that result in transport of density current. From numerical modeling view point, the accuracy of simulated results of sediment transport is often influenced by the bed-load boundary condition in upstream and resuspension mechanism of the riverbed boundary. This research adopts Hsieh’s (2003) two-dimensional (RESED2D) and Zhong’s (2012) three-dimensional (RESED3D) mobile-bed models to discuss the effect of upstream and riverbed boundary conditions on sediment transport.   To examine the effect of boundary conditions of sediment transport modeling for reservoirs, this study first simulated experimental and on-site case with 2D model for discussion of inflow boundary condition’s effect on the change of riverbed. Then, the experimental cases were simulated with use of 3D model for discussion of the effect of riverbed boundary on delivery of concentration. Finally, with a hypothetical inflow concentration profile, the 3D model was applied to the Shi-men Reservoir to show its applicability.

Topic Category 工學院 > 土木工程系所
工程學 > 土木與建築工程
Reference
  1. 2. 李鴻源、楊錦釧、葉客家、楊志達、謝慧民(1996),「辮狀河系沖淤模式之發展(四)NETSTARS模式使用者手冊」,國立台灣大學土木工程學研究所研究報告,水利8502附冊。 
    連結:
  2. 9. 洪聖翔(2011),「正交曲線座標擬似三維水理模式於彎道水流之模擬研究」,國立交通大學土木工程學系碩士學位論文。
    連結:
  3. 11. 鍾浩榮(2012) ,「河道三維高含砂水流沉滓運移模式發展與應用」,國立交通大學土木工程研究所博士論文。
    連結:
  4. 12. Audusse, E., Bristeau, M.O., and Decoene, A. (2008), “Numerical simulations of 3D free surface flows by a Multilayer Saint-Venant model” Internat. J. Numer. Methods Fluids 56, no. 3, 331–350.
    連結:
  5. 14. Bell, R.G. and Sutherland, A.J. (1983), “Nonequilibrium bedload transport by steady flows” Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 3, March, pp. 351-367.
    連結:
  6. 16. Blumberg A.F. and Mellor. G.L. (1983), “Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight” Journal of Geophysical Research, 88 4579-4592.
    連結:
  7. 17. Celik, I., and Rodi, W. (1988). “Modeling suspended sediment transport in nonequilibrium situations” Journal of Hydraulic Engineering, ASCE, 114(10).
    連結:
  8. 20. Falconer, R.A., and Lin, B. (1996), “Three-dimensional modelling of water quality in the Humber Estuary” Water Research 31 5, pp. 1092–1102.
    連結:
  9. 21. Falconer, R.A., and Lin B (1997), “Three-dimensional modelling of water quality in the Humber Estuary” Water Res 31:1092–1102.
    連結:
  10. 22. Fan HW and Rodi W (2003), “Three-dimensional calculations of flow and suspended sediment transport in the neighborhood of the dam for the Three Gorges Project (TGP) reservoir in the Yangtze River” J Hydraul Res 41:379-394.
    連結:
  11. 23. Fan HW and Wang GQ (2000), “Three-dimensional mathematical model of suspended-sediment transport” J Hydraul Eng-Asce 126:578-592.
    連結:
  12. 24. Fischer-Antze, T., Stösser, T., Bates, P., and Olsen, N. R. B. (2001) “3D numerical modelling of open-channel flow with submerged vegetation” IAHR Journal of Hydraulic Research, No. 3.
    連結:
  13. 26. Garcia MH (2007), “Sedimentation engineering: processes, measurements, modeling, and practice” American Society of Civil Engineers.”
    連結:
  14. 27. Ge, L., and Sotiropoulos, F. (2005), “3D unsteady RANS modeling of complex hydraulic engineering flows. I: Numerical model” J Hydraul Eng 131 (9), pp. 800–808.
    連結:
  15. 28. Gross, E.S., Koseff, J.R., and Monismith, S.G. (1999), “Three-dimensional salinity simulations of South San Francisco Bay” Journal of Hydraulic Engineering 125 (11): 1199-1209.
    連結:
  16. 31. Hsieh, T.Y., and Yang, J.C. (2003), “Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation.” J Hydraul Eng-Asce 129:597-612.
    連結:
  17. 33. Hu, C. and Y. Hui (1996a). “Bed-load transport I: Mechanical characteristics.” J. Hydr. Engrg., 122, 245 – 254.
    連結:
  18. 35. Jin, X., and Kranenburg, C. (1993), “Quasi-3D numerical moderling of shllow-water circulation” J. of Hydr. Eng., 119(4), pp. 458-472.
    連結:
  19. 36. Li, B., and Fleming, C. A. (2003), “Three-dimensional hydrodynamic model for free surface flow” Journal of Hydraulic Research, Volume 41, No 4, pp. 367-377.
    連結:
  20. 37. Lardner, R.W., and Cekirge, H.M. (1988), “A new algorithm for three-dimensional tidal and storm surge computations” Appl. Math. Modeling, Vol. 12, 471-481.
    連結:
  21. 38. Lien, H.C., Hsieh, T.Y., Yang, J.C., and Yeh, K.C. (1999b), “Bend-flow simulation using 2D depth-averaged model” J. Hydr. Engrg., ASCE, 125(10), 1097-1108.
    連結:
  22. 40. Meselhe EA and Sotiropoulos F (2000), “Three-dimensional numerical model for open-channels with free-surface variations.” J Hydraul Res 38:115-121.
    連結:
  23. 42. Muneta, B.N., and Shimizu, Y. (1994), “Numerical analysis model with spur-dikes considering the vertical flow velocity distribution” JSCE, Journal of Hydraulic, Coastal and Environmental Engineering, 497, 31-39.
    連結:
  24. 43. Neary, V.S., Sotiropoulos, F., and Odgaard, A.J. (1999), “Three-dimensional numerical model of lateral-intake inflows” J.Hydr. Engrg., ASCE, 125(2), pp.126-140.
    連結:
  25. 44. Nicholas, A.P., McLelland, S.J. (2004), “Computational fluid dynamics modelling of three-dimensional processes on natural river floodplains” Journal of Hydraulic Research, 42(2), 131-143.
    連結:
  26. 45. Rickenmann D (1991), “Hyperconcentrated flow and sediment transport at steep slopes.” J Hydraul Eng-Asce 117:1419-1439.
    連結:
  27. 47. Ruether N, Singh JM, Olsen NRB and Atkinson E (2005), “3-D computation of sediment transport at water intakes.” P I Civil Eng-Wat M 158:1-7.
    連結:
  28. 49. Sinha SK, Sotiropoulos F and Odgaard AJ (1998), “Three-dimensional numerical model for flow through natural rivers.” J Hydraul Eng-Asce 124:13-24.
    連結:
  29. 50. Smart GM (1984), “Sediment transport formula for steep channels.” J Hydraul Eng-Asce 110:267-276.
    連結:
  30. 51. Song, Y.T., and Hou, Y.T. (2006), “Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling” Ocean Modeling, 11, 298-332.
    連結:
  31. 54. Van Rijn, L.C., (1984a).”Sediment transports, part I: Bed load transport.” J. Hydr. Eng., ASCE, 110(10).
    連結:
  32. 55. Van Rijn, L.C., (1984b).”Sediment transports, part I: Suspended load transport.” J. Hydr. Eng., ASCE, 110(10).
    連結:
  33. 56. Van Rijn LC, van Rossum H and Termes P (1990), “Field verification of 2-d and 3-d suspended-sediment models.” Journal of Hydraulic Engineering 116:1270-1288.
    連結:
  34. 57. Wang, K.H. (1994), “Characterization of circulation and salinity change in Galvestion Bay” J. of Engineering Mechanics, ASCE, 120(3), 557-579.
    連結:
  35. 58. Wright S and Parker G (2004), “Flow resistance and suspended load in sand-bed rivers: Simplified stratification model.” J Hydraul Eng-Asce 130:796-805.
    連結:
  36. 59. Wu WM, Rodi W and Wenka T (2000). “3D numerical modeling of flow and sediment transport in open channels.” J Hydraul Eng-Asce 126:4-15.
    連結:
  37. 60. Wu, Y., and Falconer, R.A. (2000), “A mass conservative 3-D numerical model for predicting solute fluxes in estuarine waters” Advances in Water Resources 23, pp. 531–543.
    連結:
  38. 61. Xia, C., and Jin, Y.C. (2007), “Multilayer depth-averaged flow model with implicit interfaces” J. Hydr. Engrg. 133, 1145.
    連結:
  39. 62. Yang CT, Molinas A and Wu BS (1996), “Sediment transport in the Yellow River.” J Hydraul Eng-Asce 122:237-244.
    連結:
  40. 63. Zeng J, Constantinescu G and Weber L (2010), “3D calculations of equilibrium conditions in loose-bed open channels with significant suspended sediment Load.” J Hydraul Eng-Asce 136:557-571.
    連結:
  41. 64. Zhang H, Huang Y and Zhao L (2001), “A mathematical model for unsteady sediment transport in the Lower Yellow River.”
    連結:
  42. 65. Zhang, X.F., Lu, X.H., Dong, B.J., and Hu, C.H. (2011), “A quasi-3D mathematical bend flow model in non-orthogonal curvilinear coordinate system” J. Hydr. Engrg., 1, 268.
    連結:
  43. 1. 錢寧,萬兆惠(1983),「泥沙運動力學」,科學出版社,309。
  44. 3. 連和政(1999),「二維水深平均模式應用於彎道水流與泥沙運移模擬之研究」,國立交通大學土木工程研究所博士論文。
  45. 4. 謝德勇(2003),「二維水理、汙染傳輸及沉滓運移模式之研發與應用」,國立交通大學土木工程研究所博士論文。
  46. 5. 經濟部水利署(2003),「水庫沉滓運移模式研究與應用」
  47. 6. 李鴻源(2005),「石門水庫集水區泥沙產量推估之研究3/3」,經濟部水利署。
  48. 7. 張益家(2005),「二維彎道動床模式之發展研究」,國立交通大學土木工程研究所碩士論文。
  49. 8. 尤本勝,王同成,范成新(2007),「太湖沉積物再懸浮擬似方法」,湖泊科學期刊。
  50. 10. 錢樺,江文山,鄭皓元,劉康克(2011),「高潮流流速下河口沉積物再懸浮機制探討」
  51. 13. Bennet, J.P. and Nordin, C.F. (1977), “Simulation of sediment transport and armoring” Hydrological Sciences Bulletin, 37, 2119-2162.
  52. 15. Blanckaert, K., Glasson, L., Jagers, H.R.A., and Sloff, C.J. (2003), “Quasi-3D simulation of flow in sharp open-channel bends with horizontal and developed bed topography” Proc., Int. Symp. On Shallow Flows, G.H. Jirka and W.S.J. Uijttewaal, eds., Delft Univ. of Technology, Delft, The Netherlands, I, 93-100.
  53. 18. Dudley Brian Spalding, Suhas V. Patankar (1972), “Numerical prediction of three-dimensional flow” Imperial College of Science and technology Mechanical Engineering Department
  54. 19. Einhelling, R., Holly, F. M., Hsu, S. H., Schwarz, P., Schaefer J., and Yang, J. C. (1990), “Charima-numerical simulation of unsteady water and sediment movement in multiply connected network of mobile-bed channels” IIHR Report No.343, Iowa institute of Hydraulic Research, The Univerity of Iowa, Iowa City, Iowa 52242 USA. Krone, R. B. (1962).
  55. 25. French, R.H. (1986), “Open channel hydraulics” McGraw-Hill Book Company, Singapore, 705 pp.
  56. 29. GSTARS version 2.1 manual, Chih Ted Yang, Francisco J. M. Simoes (2000), U.S. Department of the Interior, Bureau of Reclamation.
  57. 30. Herzfeld, M., Waring, J., Parslow, J., Margvelashvili, N., Sakov, P., and Andrewartha, J. (2010), SHOC: Sparse Hydrodynamic Ocean Code, Scientific Manual. CSIRO Marine Research.
  58. 32. Hsieh, T.Y., and Yang, J.C. (2004), “Implicit two-step split-operator approach for modeling two-dimensional open channel flow” J. Hydro-science and Hydraulic Engineering, 22(2), 113-139.
  59. 34. Hung, M.C., Hsieh, T.Y., Tsai, T.L., and Yang, J.C. (2008), “A layer-integrated approach for shallow water free surface flow computation” Communications in Numerical Methods in Engineering, 24(12), 1699-1722. (SCI, EI).
  60. 39. Lin, M.Y., and Huang, L.H. (2008), “Velocity profiles of nonlinear shallow-water flows” Journal of the Chinese Institute of Engineers, 31(1), 105-120.
  61. 41. Mike-11:a modeling system for rivers and channels, DHI Water and Environment.
  62. 46. Rouse, H. (1940). “Criteria for similarity in the transportation of sediment.” Proc. 1st Hydr. Conf., State Univ. of Iowa, Iowa, pp. 43-49.
  63. 48. Schlichting,H. and Gersten K. (2000). Boundary Layer Theory, McGraw-Hill, New York.
  64. 52. Spasojevic and holly (1990), “MOBED2-Numerical simulation of two-dimensional mobile bed processes.” DHR Report No. 344, Iowa Inst, of Hydraulic Research.
  65. 53. TABS-2 user's manual, Thomas, W. A., and McAnally, W. H., Jr. (1985).
  66. 66. Ziegler and nisbet (1995), “Watts bar reservoir in Tennessee.”
Times Cited
  1. 朱南叡(2010)。以中心輻射量測法分析自來水管線漏水之特徵頻率。臺北科技大學機電整合研究所學位論文。2010。1-92。