Title

登山杖輔具對負重下坡行走之生物力學分析

Translated Titles

Biomechanical Analysis of Downhill Walking Using Hiking poles with Loading

Authors

雷伯欽

Key Words

運動學 ; 動力學 ; 肌電圖 ; kinematical ; dynamics ; electromyographic

PublicationName

國立臺北教育大學體育學系學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

翁梓林

Content Language

繁體中文

Chinese Abstract

目的:探討使用登山杖輔具對負重下坡行走之運動學、動力學與下肢肌電圖參數的變化情形與差異性。研究對象:以8名無下肢傷痛病史之健康成年男性(年齡20±2歲、身高174.6±6.91公分、體重65.9±5.03公斤)為研究對象。方法與步驟:以一部Mega speed 30k 高速攝影機(100Hz)、一台AMTI測力板(1000Hz)與Biovision肌電儀(1000Hz)以同步方法擷取受試者使用登山杖負重下坡行走完整步態週期之生物力學參數。影片以Kwon3D動作分析軟體處理,經人體肢段參數(BSP)建製、直接線性轉換(DLT)及量化後,取得步態週期及髖、膝、踝關節角度、軀幹前傾角度、身體重心高度等運動學參數。測力板原始訊號透過DASYLab 6.0分析軟體,經濾波(filter)、模組校正(scaling)得到原始地面反作用力,為了利於統計比較,將力量標準化(normalize),以體重倍率(Body Weight,B.W)表示。肌電訊號由DASYLab 6.0軟體分析股直肌、股二頭肌、脛骨前肌、腓腸肌等肌群之原始肌電訊號後,進行10-500Hz的band-pass濾波處理,經全波整流上翻、10 Hz低通率波平滑化處理,再利用均方根(root mean square, RMS)公式運算後,可得均方根振幅(RMS),並以各肌群之最大自主收縮(MVC)中間3秒之均方根振幅值為基準值進行正規化,最後以百分比表示表該肌群在動作過程中的平均出力程度進行肌電訊號之標準化處理。所得實驗參數使用SPSS for Windows 12.0套裝軟體以相依樣本t檢定進行統計分析(α=.05)。結果:一、步態週期時間、站立期時間、單腳支撐期時間、站立期髖、膝、踝關節之平均角度、站立期幹前傾角度均有顯著差異(P<.05);二、站立期垂直分力第一峰值、第二峰值、平均負荷率、前後分力的推蹬力峰值、推蹬期衝量有顯著差異(P<.05);三、制動期之脛骨前肌及腓腸肌、推蹬期之脛骨前肌及腓腸肌均有顯著差異(P<.05)。結論:從事登山健行活動者於負重下坡行走時使用登山杖輔具可顯著減少垂直分力峰值、平均負荷率及前後分力推蹬力峰值、推蹬期衝量都顯著減少,顯示登山杖輔具於負重下坡行走時可以有效吸收下肢的衝擊力降低傷害的發生,同時協助下坡行走時進行推蹬。

English Abstract

The purpose of this study was to compare and analysis the changes of downhill walking using hiking poles with loading in kinematical, dynamics and lower limbs electromyographic (EMG) parameters. The experiment subjects are 8 healthy male adults (age:20±2 years old, height:174.6.0±6.91cm,weight:65.9±5.03kg) . A Mega speed 35k high-speed camera (100Hz) , an AMTI force plate (1000Hz) and a Biovision EMG system(1000Hz) are used to synchronously capture kinematical, dynamics and lower limbs EMG parameters during the subjects downhill walking with loading in one gait cycle. Kinematical parameters are filmed through the camera, then the obtain film undergoes human limb sections of parameter organization system, Direct Linear Transformation and filter by the Kwon3D movement analysis software, in order to obtain the parameters such as gait cycle, trunk forward inclination angle, hip, knee, ankle of joint angle and center of mass height. The original signal from the force plate, processed by DASYLab 6.0 software to low-pass filtering (10Hz) and calibrate modular, calculates the original ground reaction forece. Body weight (B.W) is used as the basis for standardization to obtain ground reaction force values and impulse values. The original signal of EMG from Rectus femoris (RF), Biceps femoris long head (BF), Tibialis anterior (TI) and Gastrocnemius lateral head (GAS) is processed by DASYLab 6.0 software to band-pass (10-500Hz), full-wave rectification and low-pass filtering (10Hz), after using the formula root mean square (RMS) to get the RMS value, divided by the RMS value of maximum voluntary contraction (middle 3 seconds) as the basis for standardization (100%). The resulting data undergoes Paired t test via SPSS 12.0 statistics software, The level of significance for this experiment is set to α=.05. The result are : 1.The gait cycle, stand phase of hip, knee, ankle joint average angle, trunk forward inclination angle, were significantly different (p<.05). 2.The first peak force (FPF), second peak force (SPF), average loading rate of vertical ground reaction force, and propulsion force peak of horizontal ground reaction force, propulsion impulse were significantly different (p<.05). 3.The average EMG of TI and GAS in the braking phase and the average EMG of TI and GAS in the propulsion phase reached the significant difference (p<.05). According to the results analyzed, we conclude that: It appears that hiking actors downhill walking using hiking poles with loading can decrease the vertical ground reaction force, horizontal ground reaction force, impulse, maximal loading rate,and recruited less motor units. Therefore,downhill walking using hiking poles can reduce lower limbs impulse and lower extremity muscles fatigue.

Topic Category 理學院 > 體育學系
社會科學 > 體育學
Reference
  1. 田文政(1985)。我國登山運動傷害調查研究。體育學報(7期),11。
    連結:
  2. 田文政(1992)。登山健行適應行為之研究。臺北:中華民國大專院校體育總會。
    連結:
  3. 吳世峰(2003)。視障學生與正常學生下坡行走步態之研究。未出版之碩士論文,臺灣師範大學,台北市。
    連結:
  4. 宋宏偉(2003)。國小學童不同背重率之步態分析。未出版之碩士論文,屏東師範學院,屏東市。
    連結:
  5. 黃世旭、李淑貞、劉謹緣、李茂昌(1996)。中國青年人步態常模之建立。中華民國物理治療學會雜誌(21卷2期),18。
    連結:
  6. 黃勝裕(2000)。肌肉週邊疲勞之肌電圖判定。中華體育季刊(14卷1期),7。
    連結:
  7. Basmajina, J. V., & DeLuca, C. J. (1985). Muscle alive:Their functions revealed by electromyography(5th ed.). Baltimore: Williams & Wilkins.
    連結:
  8. Bohne, M., & Abendroth-smith, J. (2007). Effects of hiking downhill using trekking poles while carrying external loads. Medicine & Science in Sports & Exercise, 39(1), 177-183.
    連結:
  9. Bowers, E. J., Morgan, D. L., & Proske, U. (2004). Damage to the human quadriceps muscle from eccentric exercise and the training effect. Journal of Sports Sciences, 22(11-12), 1005-1014.
    連結:
  10. Buczek, F. L., & Cavanagh, P. R. (1990). Stance phase knee and ankle kinematics and kinetics during level and downhill running. Medicine & Science in Sports & Exercise, 22(5), 669-677.
    連結:
  11. Foissac, M. J., Berthollet, R., Seux, J., Belli, A., & Millet, G. Y. (2008). Effects of hiking pole inertia on energy and muscular costs during uphill walking. Medicine and Science in Sports and Exercise, 40(6), 1117-1125.
    連結:
  12. Goh, J. H., Thambyah, A., & Bose, K. (1998). Effects of varying backpack loads on peak forces in the lumbosacral spine during walking. Clinical Biomechanics, 13(1), 26-31.
    連結:
  13. Grimmer, K., Dansie, B., Milanese, S., Pirunsan, U., & Trott, P. (2002). Adolescent standing postural response to backpack loads: A randomised controlled experimental study. BMC Musculoskeletal Disorders, 3, 10-10.
    連結:
  14. Hong, Y., & Brueggemann, G. P. (2000). Changes in gait patterns in 10-year-old boys with increasing loads when walking on a treadmill. Gait Posture, 11(3), 254-259.
    連結:
  15. Hong, Y., & Cheung, C.-K. (2003). Gait and posture responses to backpack load during level walking in children. Gait & Posture, 17(1), 28.
    連結:
  16. Jacobson, B. H., Wright, T., & Dugan, B. (2000). Load carriage energy expenditure with and without hiking poles during inclined walking. International Journal of Sports Medicine, 21(5), 356-359.
    連結:
  17. Kinoshita, H. (1985). Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics, 28(9), 1347-1362.
    連結:
  18. Kuster, M., Sakurai, S., & Wood, G. A. (1995). Kinematic and kinetic comparison of downhill and level walking. Clinical Biomechanics, 10(2), 79-84.
    連結:
  19. Laursen, B., Ekner, D., Simonsen, E. B., Voigt, M., & Sjogaard, G. (2000). Kinetics and energetics during uphill and downhill carrying of different weights. Applied Ergonomics, 31(2), 159-166.
    連結:
  20. Lay, A. N., Hass, C. J., & Gregor, R. J. (2006). The effects of sloped surfaces on locomotion: A kinematic and kinetic analysis. Journal of Biomechanics, 39(9), 1621-1628.
    連結:
  21. Lay, A. N., Hass, C. J., Richard Nichols, T., & Gregor, R. J. (2007). The effects of sloped surfaces on locomotion: An electromyographic analysis. Journal of Biomechanics, 40(6), 1276-1285.
    連結:
  22. Lee, Y. H., & Jiang, M. S. (1999). An ergonomic design and performance evaluation of pipettes. Applied Ergonomics, 30(6), 487-493.
    連結:
  23. Leroux, A., Fung, J., & Barbeau, H. (2002). Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait Posture, 15(1), 64-74.
    連結:
  24. Martin, P. E., & Nelson, R. C. (1986). The effect of carried loads on the walking patterns of men and women. Ergonomics, 29(10), 1191-1202.
    連結:
  25. McIntosh, A. S., Beatty, K. T., Dwan, L. N., & Vickers, D. R. (2006). Gait dynamics on an inclined walkway. Journal of Biomechanics, 39(13), 2491-2502.
    連結:
  26. Redfern, M. S., & DiPasquale, J. (1997). Biomechanics of descending ramps. Gait & Posture, 6(2), 119-125.
    連結:
  27. Ren, L., Jones, R. K., & Howard, D. (2005). Dynamic analysis of load carriage biomechanics during level walking. J Biomech, 38(4), 853-863.
    連結:
  28. Schwameder, H., Roithner, R., Muller, E., Niessen, W., & Raschner, C. (1999). Knee joint forces during downhill walking with hiking poles. Journal of Sports Sciences, 17(12), 969-978.
    連結:
  29. Sun, J., Walters, M., Svensson, N., & Lloyd, D. (1996). The influence of surface slope on human gait characteristics: A study of urban pedestrians walking on an inclined surface. Ergonomics, 39(4), 677-692.
    連結:
  30. Wang, Y., Pascoe, D. D., & Weimar, W. (2001). Evaluation of book backpack load during walking. Ergonomics, 44(9), 858-869.
    連結:
  31. Willson, J., Torry, M. R., Decker, M. J., Kernozek, T., & Steadman, J. R. (2001). Effects of walking poles on lower extremity gait mechanics. Medicine & Science in Sports & Exercise, 33(1), 142-147.
    連結:
  32. 一、中文部分
  33. 吳劍、李建設(2002)。步態生物力學研究進展。中國體育科技,38(1),38-39。
  34. 吳慧芬(1994)。正常兒童之步態肌電訊號分析。未出版之碩士論文,國立成功大學醫學工程研究所,台南市。
  35. 李秋芳(2002)。國家公園相關法規與登山活動。高山嚮導員研習會輯,中民國健行登山會。
  36. 阮五福(1996)。人體下肢空間步態擺盪期力學模型及膝下義肢步態模擬分析。未出版之碩士論文,國立成功大學醫學院,臺南市。
  37. 林逸錄(1998)。在不同坡度上走與跑對足底壓力影響的探討。未出版之碩士論文,國立體育學院,桃園縣。
  38. 相子元(1997)。足部運動生物力學研究。財團法人鞋類設計暨技術研究中心委託學術機構研究報告。
  39. 陳立元(1996)。在跑步機上後退步態的力學及肌電圖分析。未出版之碩士論文。中山醫學院醫學研究所,台中。
  40. 陳嘉雯(2006)。登山健行活動之登山客持續涉入、休閒效益與幸褔感關係之研究。未出版之碩士論文,銘傳大學觀光研究所碩士班,桃園縣。
  41. 黃詩帆(2006)。國小學童不同背重率行走之生物力學探討。未出版之碩士論文,國立臺北教育大學體育學系碩士班,臺北市。
  42. 廖英壹(2007)。老人與年輕人上下斜坡時的生物力學分析。未出版之碩士論文,國立陽明大學醫學工程學研究所,臺北市。
  43. 錢競光、宋雅傳、李勇強、唐瀟(2006)。步行動作的生物力學原理及其步態分析。南京體育學院學報,5(4),1-7。
  44. 二、英文部分
  45. Astrand, P., & Rodahl, K. (1970). Textbook of work physiology,60-61.New York: McGraw-Hill
  46. Dempster, W. T. (1955). Space Requirements of the Seated Operator. WADC Technical Report (TR-55-159). OH: Wright-Patterson Air Force Base.
  47. Perry, J. (1992). Gait analysis. Thorofare, NJ: Slack Incorporated.
  48. Tokuhiro, A., Nagashima, H., & Takechi, H. (1985). Electromyographic kinesiology of lower extremity muscles during slope walking. Archives of Physical Medicine Rehabilitation, 66(9), 610-613.