透過您的圖書館登入
IP:18.218.184.214
  • 期刊
  • OpenAccess

Adsorption Control Performance of Phosphorus Removal from Agricultural Non-Point Source Pollution by Nano-Aperture Lanthanum-modified Active Alumina

並列摘要


It is great significance to control the phosphorus pollution from agricultural non-point source pollution. In this study, adsorption control performance of phosphorus removal from agricultural non-point source pollution by manual nano-aperture Lanthanum-modified active alumina was a great inspiring from urban-rural-integration-area. About 10 to 30 nanometers aperture on granule surfaces from the active alumina (γ-Al_2O_3) which average sphere diameters is 3 mm, was formed after modification from Lanthanum (III) chloride. Results show that the adsorption performance of phosphorus removal by using nano-aperture Lanthanum-modified active alumina was much higher percent 50% than active alumina under the optimum condition of pH (pH = 4), adsorption time (12 h) and adsorption dosage of Lanthanum-modified active alumina (0.2 g/50 mL). The adsorption performance of phosphorus removal by nano-aperture Lanthanum-modified active alumina can reach the percentage of 96 from water samples in agricultural non-point source pollution. The adsorption kinetic accorded with the Pseudo-Second-order Kinetic Equations (R^2 = 0.9955). The isothermal adsorption property was described by the Langmuir Equation (R^2 = 0.9982) which the biggest adsorption capacity was 0.257 mg/g. The average removal efficiency of phosphorus from general farmland, corn field, paddy field, vegetable land was above 92%. It is very evident that the nano-aperture Lanthanum-modified active alumina will be a promising material for phosphorus removal control from agricultural non-point source pollution.

延伸閱讀