54.161.91.76,您好!
查詢符號(半形) 查詢符號意義說明
空格 表示為「AND」兩個查詢詞之交集
雙引號 ( " " ) 片語以雙引號標示開始及結束,而且只尋找出現順序相同的字詞,例 : " image process "
? 表示一個字母切截,輸入兩個?表兩個字母,依此類推,例:輸入「Appl?」,查得結果應為appl e , appl y … ( 常用於英文字查詢 )
* 表示不限字母切截,由0~n. 例:輸入「appl*」,查得結果應為appl e , appl es , appl y , appl ied , appl ication … ( 常用於英文字查詢 )
AND、OR、NOT

布林邏輯組合關鍵字,用來擴大或縮小查詢範圍的技巧。
(1) AND :縮小查詢範圍
(2) OR :擴大查詢範圍 (3) NOT:排除不相關的範圍

close

DOI 是數位物件識別碼 ( D igital O bject I dentifier ) 的簡稱,
為物件在網路上的唯一識別碼,可用於永久連結並引用目標物件。

使用DOI作為永久連結

每個DOI號前面加上 「 http://dx.doi.org/ 」 便成為永久網址。
如以DOI號為 10.5297/ser.1201.002 的文獻為例,此文獻的永久連結便是: http://dx.doi.org/ 10.5297/ser.1201.002
日後不論出版單位如何更動此文獻位置,永久連結所指向的位置皆會即時更新,不再錯失重要的研究。

引用含有DOI的文獻

有DOI的文獻在引用時皆應同時引用DOI。若使用APA、Chicago以外未規範DOI的引用格式,可引用DOI永久連結。

DOI可強化引用精確性、增強學術圈連結,並給予使用者跨平台的良好使用經驗,目前在全世界已有超過五千萬個物件申請DOI。 如想對DOI的使用與概念有進一步了解,請參考 華藝DOI註冊中心doi.airiti.com ) 。

關閉

ACI:

數據來源:Academic Citation Index,簡稱ACI
臺灣地區最大的引用文獻資料庫,目前收錄臺灣地區所出版的人文學、社會學領域學術期刊,穩定出刊中的期刊總量約400種,若包含已收錄但後續停刊的期刊,總期刊量超過500種,每年定期公布收錄期刊的影響係數(Impact Factor)等指標給大眾,並可提供專家學者免費進行學術研究使用。

影響指數(Impact Factor):某一期刊前兩年產出的論文,在統計年平均被引用的次數。
公式:(前兩年發表論文在統計年的被引用次數)÷(前兩年論文產出論文總篇數)
例如:2010年之影響係數(2011年呈現)
2009年A期刊產出論文15篇,2009年A期刊產出論文在2009年被引用20次
2008年A期刊產出論文16篇,2008年A期刊產出論文在2009年被引用30次
→ 2010年的影響係數 =(20+30)÷(15+16)≒1.61

關閉

什麼是預刊文章?

為提供讀者最前線之學術資訊,於期刊文獻獲同意刊登後、紙本印製完成前,率先於網路線上發表之文章即為預刊文章。預刊文章尚未有卷期、頁次及出版日期資訊,但可藉由DOI號識別。DOI號是文獻的數位身份證字號,不論預刊或正式出版皆不會改變,讀者可點擊DOI連結,或於DOI號前面加上 「 http://dx.doi.org/ 」 連結到文獻目前最新版本。

如何引用預刊文章?

請使用預刊文章的線上發表日期及DOI號來引用該篇文獻。

引用範例(視不同引文格式規範可能有所差異):

作者姓名。文章篇名。期刊名稱。YYYY/MM/DD線上預先發表。

doi:DOI 號

1 個人覺得 這篇文章 推薦
摘要 〈TOP〉
並列摘要 〈TOP〉
參考文獻 ( 110 ) 〈TOP〉
  1. [5] M. O. Albertson and K. L. Collins. Duality and perfection for edges in cliques. Journal of Combinatorial Theory, Series B, 36(3):298–309, 1984.
    連結:
  2. [6] L. Alcón, L. Faria, C. M. H. de Figueiredo, and M. Gutierrez. The complexity of clique graph recognition. Theoretical Computer Science, 410(21–23):2072–2083, 2009.
    連結:
  3. [7] P. Alimonti and T. Calamoneri. Improved approximations of independent dominating set in bounded degree graphs. In Proceedings of WG’96, pages 2–16, 1996.
    連結:
  4. [11] P. Anand, H. Escuadro, R. Gera, S. Hartke, and D. Stolee. On the hardness of recognizing triangular line graphs. Discrete Mathematics, 312(17):2627–2638, 2012.
    連結:
  5. [13] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM, 41(1):153–180, 1994.
    連結:
  6. [22] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.
    連結:
  7. [24] A. E. Brouwer and G. H. J. van Rees. More mutually orthogonal Latin squares. Discrete Mathematics, 39(3):263–281, 1982.
    連結:
  8. [28] M. R. Cerioli and J. L. Szwarcfiter. Edge clique graphs and some classes of chordal graphs. Discrete Mathematics, 242(1–3):31–39, 2002.
    連結:
  9. [29] G. J. Chang. The weighted independent domination problem is NP-complete for chordal graphs. Discrete Applied Mathematics, 143(1–3):351–352, 2004.
    連結:
  10. [33] S. Chowla, P. Erdös, and E. G. Straus. On the maximal number of pairwise orthogonal Latin squares of a given order. Canadian Journal of Mathematics, 12:204–208, 1960.
    連結:
  11. [34] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1–3):165–177, 1990.
    連結:
  12. [39] R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying polygonal cycles. Discrete & Computational Geometry, 30(2):205–239, 2003.
    連結:
  13. [41] D. G. Corneil, H. Lerchs, and L. Stewart-Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3(3):163–174, 1981.
    連結:
  14. [42] D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied Mathematics, 9(1):27–39, 1984.
    連結:
  15. [50] E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell. Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami. Computational Geometry: Theory & Applications, 16(1):3–21, 2000.
    連結:
  16. [55] R.-C. Duh and M. Fürer. Approximation of k-set cover by semi-local optimization. In Proceedings of STOC’97, pages 256–264, 1997.
    連結:
  17. [59] R. Ganian and P. Hliněný. Better polynomial algorithms on graphs of bounded rankwidth. In Proceedings of IWOCA’09, pages 266–277, 2009.
    連結:
  18. [64] D. A. Gregory and N. J. Pullman. On a clique covering problem of orlin. Discrete Mathematics, 41(1):97–99, 1982.
    連結:
  19. [66] P. Haxell, A. Kostochka, and S. Thomassé. A stability theorem on fractional covering of triangles by edges. European Journal of Combinatorics, 33(5):799–806, 2012.
    連結:
  20. [70] R. W. Irving. On approximating the minimum independent dominating set. Information Processing Letters, 37(4):197–200, 1991.
    連結:
  21. [78] J. Körner. Intersection number and capacities of graphs. Discrete Mathematics, 142(1–3):169–184, 1995.
    連結:
  22. [86] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41(5):960–981, 1994.
    連結:
  23. [87] F. Ma and J. Zhang. Finding orthogonal Latin squares using finite model searching tools. Science China Information Sciences, 56(3):1–9, 2013.
    連結:
  24. [89] S. Micali and V. V. Vazirani. An O(pV jej) algorithm for finding maximum matching in general graphs. In Proceedings of FOCS’80, pages 17–27, 1980.
    連結:
  25. [94] B. Park, S.-R. Kim, and Y. Sano. The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares. Discrete Mathematics, 309(23–24):6464–6469, 2009.
    連結:
  26. [101] E. Prisner. Graph Dynamics. Pitman Research Notes in Mathematics Series. Longman, 1995.
    連結:
  27. [106] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In Proceedings of FOCS’00, pages 443–453, 2000.
    連結:
  28. [107] G. Toussaint. Movable separability of sets. In Computational Geometry, pages 335–375. North-Holland, Amsterdam, 1985.
    連結:
  29. [109] R. M. Wilson. Concerning the number of mutually orthogonal Latin squares. Discrete Mathematics, 9(2):181–198, 1974.
    連結:
  30. [1] T. G. Abbott, E. D. Demaine, and B. Gassend. A generalized Carpenter’s Rule Theorem for self-touching linkages. arXiv:0901.1322, 2009.
  31. [2] Z. Abel, E. D. Demaine, M. L. Demaine, J.-I. Itoh, A. Lubiw, C. Nara, and J. O’Rourke. Continuously flattening polyhedra using straight skeletons. In Proceedings of SoCG’14, pages 396–405, 2014.
  32. [3] Z. Able, E. D. Demaine, M. L. Demaine, S. Eisenstat, J. Lynch, T. B. Schardl, and I. Shapiro-Ellowitz. Folding equilateral plane graphs. In Proceedings of ISAAC’11, pages 574–583, 2011.
  33. [4] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for dominating set. Journal of the ACM, 51(3):363–384, 2004.
  34. [8] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica, 54(4):544–556, 2009.
  35. [9] N. Alon, P. Seymour, and R. Thomas. A separator theorem for nonplanar graphs. Journal of the American Mathematical Society, 3(4):801–808, 1990.
  36. [10] H. Alt, C. Knauer, G. Rote, and S. Whitesides. On the complexity of the linkage reconfiguration problem. In J. Pach, editor, Towards a Theory of Geometric Graphs, volume 342 of Contemporary Mathematics, pages 1–13. American Mathematical Society, 2004.
  37. [12] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs (extended abstract). In Proceedings of ICALP’88, pages 38–51, 1988.
  38. [14] B. Ballinger, D. Charlton, E. D. Demaine, M. L. Demaine, J. Iacono, C.-H. Liu, and S.-H. Poon. Minimal locked trees. In Proceedings of WADS’09, pages 61–73, 2009.
  39. [15] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory, Series B, 41(2):182–208, 1986.
  40. [16] A. A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing Letters, 19(1):37–40, 1984.
  41. [17] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. Locked and unlocked polygonal chains in three dimensions. Discrete & Computational Geometry, 26(3):269–281, 2001.
  42. [18] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. A note on reconfiguring tree linkages: trees can lock. Discrete Applied Mathematics, 117(1–3):293–297, 2002. The full paper is Technical Report SOCS-00.7, School of Computer Science, McGill University, September 2000. Originally appeared at CCCG 1998.
  43. [19] T. C. Biedl, E. D. Demaine, S. Lazard, S. M. Robbins, and M. A. Soss. Convexifying monotone polygons. In Proceedings of ISAAC’99, pages 415–424, 1999.
  44. [20] N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory 1736-1936. Oxford University Press, 1986.
  45. [21] M. Blanchette, E. Kim, and A. Vetta. Clique cover on sparse networks. In Proceedings of ALENEX’12, pages 93–102, 2012.
  46. [23] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1–2):1–45, 1998.
  47. [25] J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal intervals and unknots in 3-space. Journal of Knot Theory and Its Ramifications, 7(8):1027–1039, 1998.
  48. [26] M. R. Cerioli. Clique graphs and edge-clique graphs. Electronic Notes in Discrete Mathematics, 13:34–37, 2003.
  49. [27] M. R. Cerioli and J. L. Szwarcfiter. A characterization of edge clique graphs. Ars Combinatoria, 60:287–292, 2001.
  50. [30] M.-S. Chang, S.-Y. Hsieh, and G.-H. Chen. Dynamic programming on distancehereditary graphs. In Proceedings of ISAAC’97, pages 344–353, 1997.
  51. [31] M.-S. Chang and Y.-C. Liu. Polynomial algorithms for the weighted perfect domination problem on chordal graphs and split graphs. Information Processing Letters, 48(4):205–210, 1993.
  52. [32] M. Chlebík and J. Chlebíková. Approximation hardness of dominating set problems in bounded degree graphs. Information and Computation, 206(11):1264–1275, 2008.
  53. [35] R. Cocan and J. O’Rourke. Polygonal chains cannot lock in 4D. Computational Geometry: Theory & Applications, 20(3):105–129, 2001.
  54. [36] J. Cohen. Graph twiddling in a MapReduce world. Computing in Science and Engineering, 11(4):29–41, 2009.
  55. [37] R. Connelly, E. D. Demaine, M. L. Demaine, S. P. Fekete, S. Langerman, J. S. B. Mitchell, A. Ribó, and G. Rote. Locked and unlocked chains of planar shapes. Discrete & Computational Geometry, 44(2):439–462, 2010.
  56. [38] R. Connelly, E. D. Demaine, and G. Rote. Infinitesimally locked self-touching linkages with applications to locked trees. In J. A. Calvo, K. C. Millett, and E. J. Rawdon, editors, Physical Knots: Knotting, Linking, and Folding of Geometric Objects in R3, volume 304, pages 287–311. American Mathematical Society, 2002.
  57. [40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.
  58. [43] D. G. Corneil, Y. Perl, and L. K. Stuwart. A linear recognition algorithm for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.
  59. [44] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12–75, 1990.
  60. [45] M. Cygan, M. Pilipczuk, and M. Pilipczuk. Known algorithms for edge clique cover are probably optimal. In Proceedings of SODA’13, pages 1044–1053, 2013.
  61. [46] R. Dawson. On removing a ball without disturbing the others. Mathematics Magazine, 57(1):27–30, 1984.
  62. [47] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.
  63. [48] M. de Berg and A. Khosravi. Optimal binary space partitions for segments in the plane. International Journal of Computational Geometry & Applications, 22(3):187–206, 2012.
  64. [49] E. D. Demaine and M. L. Demaine. Computing extreme origami bases. Technical Report CS-97-22, Department of Computer Science, University of Waterloo, May 1997.
  65. [51] E. D. Demaine, S. Langerman, J. O’Rourke, and J. Snoeyink. Interlocked open linkages with few joints. In Proceedings of SoCG’02, pages 189–198, 2002.
  66. [52] E. D. Demaine, S. Langerman, J. O’Rourke, and J. Snoeyink. Interlocked open and closed linkages with few joints. Computational Geometry: Theory and Applications, 26(1):37–45, 2003.
  67. [53] E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007.
  68. [54] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999.
  69. [56] Z. Dvořák and D. Král. Classes of graphs with small rank decompositions are¬-bounded. European Journal of Combinatorics, 33(4):679–683, 2012.
  70. [57] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
  71. [58] M. Farber. Independent domination in chordal graphs. Operation Research Letters, 1(4):134–138, 1982.
  72. [60] J. Gao, T. Kloks, and S.-H. Poon. Triangle-partitioning edges of planar graphs, toroidal graphs and k-planar graphs. In Proceedings of WALCOM’13, pages 194–205, 2013.
  73. [61] M. R. Garey and M. R. Johnson. Computers and Intractability. W. H. Freeman, 1979.
  74. [62] L. Gargano, J. Körner, and U. Vaccaro. Sperner capacities. Graphs and Combinatorics, 9(1):31–46, 1993.
  75. [63] J. Glass, B. Lu, J. O’Rourke, and J. K. Zhong. A 2-chain can interlock with an open 11-chain. Geombinatorics, 15(4):166–176, 2006.
  76. [65] A. Gyárfás. A simple lower bound on edge covering by cliques. Discrete Mathematics, 85(1):103–104, 1990.
  77. [67] B. Hayes. Prototeins. American Scientist, pages 216–221, 1998.
  78. [68] C. T. Hoàng. Perfect graphs. PhD thesis, School of Computer Science, McGill University, Montreal, 1985.
  79. [69] E. Howorka. A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics, 28(2):417–420, 1977.
  80. [71] B. Jamison and S. Olariu. Recognizing P4-sparse graphs in linear time. SIAM Journal on Computing, 21(2):381–406, 1992.
  81. [72] B. Jamison and S. Olariu. A tree representation for P4-sparse graphs. Discrete Applied Mathematics, 35(2):115–129, 1992.
  82. [73] V. Kann. On the approximability of NP-complete optimization problems. PhD thesis, Department of numerical analysis and computing science, Royal Institute of Technology, Stockholm, 1992.
  83. [74] T. Kikuno, N. Yoshida, and Y. Kakuda. The NP-completeness of the dominating set problem in cubic planar graphs. IEICE Transactions, E63(6):443–444, 1980.
  84. [75] T. Kloks. Treewidth – Computations and Approximations, volume 842 of LNCS. Springer-Verlag, 1994.
  85. [76] D. E. Knuth and A. Raghunathan. The problem of compatible representatives. SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.
  86. [77] J. Kong and Y. Wu. On economical set representations of graphs. Discrete Mathematics & Theoretical Computer Science, 11(2):71–96, 2009.
  87. [79] N. Korula and S. Lattanzi. An efficient reconciliation algorithm for social networks. Proceedings of the VLDB Endowment, 7(5):377–388, 2014.
  88. [80] L. T. Kou, L. J. Stockmeyer, and C. K. Wong. Covering edges by cliques with regard to keyword conflicts and intersection graphs. Communications of the ACM, 21(2):135–139, 1978.
  89. [81] Y. Kusakari. On reconfiguring radial trees. IEICE Transactions, E89-A(5):1207–1214, 2006.
  90. [82] Y. Kusakari, M. Sato, and T. Nishizeki. Planar reconfiguration of monotone trees. IEICE Transactions, E85-A(5):938–943, 2002.
  91. [83] S. A. Lakshmanan, Cs. Bujtás, and Zs. Tuza. Small edge sets meeting all triangles of a graph. Graphs and Combinatorics, 28(3):381–392, 2012.
  92. [84] S. A. Lakshmanan and A. Vijayakumar. Clique irreducibility of some iterative classes of graphs. Discussiones Mathematicae Graph Theory, 28(2):307–321, 2008.
  93. [85] V. B. Le. Gallai graphs and anti-Gallai graphs. Discrete Mathematics, 159(1–3):179–189, 1996.
  94. [88] D. F. Manlove. On the algorithmic complexity of twelve covering and independence parameters of graphs. Discrete Applied Mathematics, 91(1–3):155–175, 1999.
  95. [90] E. Mujuni and F. Rosamond. Parameterized complexity of the clique partition problem. In Proceedings of CATS’08, pages 75–78, 2008.
  96. [91] J. O’Rourke. Folding and unfolding in computational geometry. In Proceedings of JCDCG’98, pages 258–266, 2000.
  97. [92] S.-I. Oum. Graphs of bounded rankwidth. PhD thesis, Princeton University, 2005.
  98. [93] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.
  99. [95] G. Philip, V. Raman, and S. Sikdar. Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. Journal ACM Transactions on Algorithms, 9(1):Article No. 11, 2012.
  100. [96] S. Poljak. A note on stable sets and coloring of graphs. Commentationes Mathematicae Universitatis Carolinae, 15(2):307–309, 1974.
  101. [97] S.-H. Poon. On straightening low-diameter unit trees. In Proceedings of GD’05, pages 519–521, 2005.
  102. [98] S.-H. Poon. On unfolding lattice polygons/trees and diameter-4 trees. In Proceedings of COCOON’06, pages 186–195, 2006.
  103. [99] S.-H. Poon. On unfolding 3D lattice polygons and 2D orthogonal trees. In Proceedings of COCOON’08, pages 374–384, 2008.
  104. [100] S.-H. Poon. On unfolding lattice polygons/trees and diameter-4 trees. International Journal of Computational Geometry and Applications, 19(3):289–321, 2009.
  105. [102] A. Raychaudhuri. Intersection number and edge clique graphs of chordal and strongly chordal graphs. Congressus Numerantium, 67:197–204, 1988.
  106. [103] A. Raychaudhuri. Edge clique graphs of some important classes of graphs. Ars Combinatoria, 32:269–278, 1991.
  107. [104] E. Scheinerman and A. Trenk. On the fractional intersection number of a graph. Graphs and Combinatorics, 15:341–351, 1999.
  108. [105] Y. Song, T. Liu, and K. Xu. Independent domination on tree convex bipartite graphs. In Proceedings of FAW-AAIM’12, pages 129–138, 2012.
  109. [108] Zs. Tuza. A conjecture on triangles of graphs. Graphs and Combinatorics, 6(4):373–380, 1990.
  110. [110] I. E. Zverovich and V. E. Zverovich. An induced subgraph characterization of domination perfect graphs. Journal of Graph Theory, 20(3):375–395, 1995.
E-mail :
文章公開取用時,將寄通知信至您填寫的信箱地址
E-mail :

close

close