透過您的圖書館登入
IP:13.59.210.36
  • 期刊

Litton7:Litton視覺景觀分類深度學習模型

Litton7: A Deep Learning Model for the Visual Landscape Classification of Litton

摘要


視覺景觀分類(visual landscape classification)是以視覺特徵進行景觀資源歸類,良好的分類系統可以讓後續的規劃設計順利進行,並且讓資源管理更有效率。Litton自1968年開始在美國林務局進行了一系列的研究,建立起視覺景觀分類與評估方法,其分類架構具有相當的代表性。本研究試圖以深度學習進行Litton視覺景觀分類系統的人工智慧模型訓練,目的在降低視覺景觀資源調查的人力需求,同時增加判斷標準一致性。訓練方法上使用深度學習中的遷移學習(transfer learning)進行模型訓練,結果顯示模型實際使用精確度(precision)達80%,是可實際運用於實務的分類模型,該模型命名為Litton7(https://github.com/lichihho/Litton7.git),未來模型可朝多類別訓練改進,使其更符合人類對環境分類的習慣。

並列摘要


Visual Landscape Classification (VLC) is the categorization of landscape resources based on visual features. A good classification system can facilitate subsequent planning and design and make increase resource management efficiency more efficient. Litton has conducted a series of studies in the U.S. Forest Service since from 1968, to establish establishing a visual landscape classification and evaluation method, and its classification system is quite representative. This study attempts to train the an artificial intelligence model of of Litton's visual landscape classification VLC system with using deep learning. The use of , with the deep learning aims to of reduceing the manpower requirements of associated with visual landscape resource surveyance and as well asand to increaseing the consistency of judgment standards. The training method uses transfer learning to train the model, and the. The results show that indicate a model the accuracy of the model reaches up to 80%, which is a classification model that can be indicating that the model can be practically applied in the field. This model, named Litton7 (https://github.com/lichihho/Litton7.git), has the potential for future improvements by incorporating multi-class training, making it more amenable to environment classifications. In the future, the model can be improved to encompass multi-class training, so that it can be more in line with themaking it more amenable to human habit of classifying the environment classification. Litton7 can be obtained from the following website: (https://github.com/lichihho/Litton7.git).

參考文獻


何立智、何柏翰(2022)。語意分割技術於景觀評估之運用。戶外遊憩研究,35(2),1-32。https://doi.org/10.6130/JORS.202206_35(2).0001。
Abella, S. R., Shelburne, V. B., & MacDonald, N. W. (2003). Multifactor classification of forest landscape ecosystems of Jocassee Gorges, southern Appalachian Mountains, South Carolina. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 33(10), 1933-1946. https://doi.org/10.1139/x03-116
Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435
Alrababah, M. A., & Alhamad, M. N. (2006). Land use/cover classification of arid and semi-arid Mediterranean landscapes using Landsat ETM. International Journal of Remote Sensing, 27(13), 2703-2718. https://doi.org/10.1080/01431160500522700
Arias-Garcia, J. (2019). Methodological proposal for the classification, characterization and qualification of landscapes: the endorheic basin of Padul (Andalusia) as a case study. Boletin De La Asociacion De Geografos Espanoles, 80, 2604. http://dx.doi.org/10.21138/bage.2604

延伸閱讀