本研究之目的在利用Clebsch速度分解法來求解通過有限翼的三維流動的問題。速度場被自然分爲無旋及有接兩部份,傳統的Euler方程式被轉化爲一個類橢圓形式及數個傳遞性的方程式。按本文所提出之方法任何現存之勢流程式應可直接提升成EULER程式,只須加入傳遞變數對質量守恆的影響而已。這種方法的另一好處是,不同類別的流動變數,可以用不同的數值方法來處理。數值模擬中,有自主體積法及有限差分法被用來求解流動方程式。矩形直翼及後掠漸縮翼在不同的流動狀況被選取來印證所提出之求解方法。諸測試項目的計算結果在與實驗數據,及由其它數值方法所獲得的計算結果作比較,證實了此方法在解三維流場的正確、經濟、及有效性。
The problem of steady three-dimensional Euler flow over finite wings has been solved by the method of Clebsch velocity decomposition. The velocity field is decomposed into an irrotational and a rotational part. The Euler equations are then recast into an elliptic-like equation and several convection equations. This approach provides a generalization of the full potential formulation to rotational Euler physics by allowing variations of convective quantities. Finite volume and finite difference schemes are used to derive numerical results. Solutions comparing with available experimental data and results from existing code are presented.