本研究將介紹使用0.15μm 砷化鎵(0.15μm GaAs pHEMT) 製程應用於K 頻帶接收機的晶片設計,射頻端的低雜訊放大器包含了三級共源極放大器且在射頻的頻段中有雜訊匹配最佳化。混波器是採用了單級平衡式混波器,其中差動端輸入的本地振盪源(LO) 採用可做於晶片內部的馬相巴倫(Marchand Balun),此外輸出端使用主動式巴倫來合併8 GHz 的中頻(IF)。此晶片面積為1000μm×2500μm,在室溫下有轉換增益約為20dB 而整體功耗約為140mW。寬頻的中頻頻寬有更詳細的雜訊量測步驟已經完成,其轉換增益對量測溫度雜訊Tn 也會被探討。此接收機電路會應用於焦面陣列的結構中,所以緊密低溫接收機模組是迫切需要的設計條件。
The research describes the progress of a K-band receiver in the WIN 0.15μm GaAs pHEMT process. Its low noise amplifier (LNA) contains three stages of common-source transistors, and the noise performance has been optimized over the intended bandwidth; the following mixer uses single-balanced transistors when an edge-coupled Marchand balun provides the required 18-26 GHz differential-mode local oscillator (LO). The active balun is used for combining 8GHz intermediate (IF) signals. Its on-wafer conversion gain at room temperature is about 20dB while the noise temperature is close to 300K, using overall power consumption of 140mW, and the chip area is 1000μm×2500μm. A close inspection on the wide-IF-band noise measurement procedure is also provided and the impact of conversion gain on the measured Tn is explored. This receiver circuit will facilitate the construction of large focal plane arrays which compact cryogenic receiver modules are in urgent demand.