On vaadeldud ühe-ja kahepoolsete TQ-algebrate ning ühe-ja kahepoolsete topoloogiliste ideaalide põhiomadusi. On esitatud näiteid TQ-algebratest ja sõnastatud mõned senini lahendamata probleemid.
Several properties of unital left (right) TQ-algebras are described. The conditions when a unital semitopological algebra is a left (right) TQ-algebra are given. It is shown that the space M (A) (of nontrivial continuous multiplicative linear functionals on A) in the Gelfand topology is a compact Hausdorff space for every unital TQ-algebra with a nonempty set M (A) and a commutative complete metrizable unital algebra is a TQ-algebra if and only if all maximal topological ideals of A are closed. Examples of TQ-algebras are given. Open problems are presented.