The transport of aerosols relies primarily upon air flow for conveyance; however, the air flow pattern is dominated by large-scale circulation conditions. One mission of the 2013 7-SEAS/BASELInE (Seven SouthEast Asian Studies/Biomassburning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment) was to capture/confirm the downwind effect on the surface air quality due to the long-range transport of Southeast Asia biomass-burning (SEA BB) pollutants. This phenomenon was first discovered during the 2010 Dongsha experiment and directly observed by a lidar system at Hengchun in southern Taiwan during 7-SEAS/BASELInE. Through three-dimensional structural analysis, it was found that the sinking motion behind the upper-level active short wave trough is the major mechanism that enhances subsidence along the cold surge leading edge. In turn, the enhanced subsidence could bring the long-range transport of the SEA BB pollutants down to the surface. Furthermore, the HYSPLIT backward air trajectories helped identify the SEA BB pollutants in the mid-troposphere, while the fine-resolution WRF model simulation combined with dual-polarization lidar observations demonstrated the evolution of the brought-down aerosols process. An additional significant finding of this study is that the upper-level ridge-trough short wave within 20°-35°N was very active during spring 2013, highlighting the inter-annual variability of the long-range transport of SEA BB pollutants.