透過您的圖書館登入
IP:18.224.3.26
  • 期刊

應用機器學習與深度學習於金屬零件影像識別之研究

A Study on the Application of Machine Learning and Deep Learning to Image Recognition of Metal Parts

摘要


本研究針對金屬零件的影像識別,探討了使用Teachable Machine和Matlab Transfer Learning App兩種方法實現AI模型自動識別的能力。在Teachable Machine平台上,成功建立了一個識別10種金屬零件的AI模型,並通過增加訓練照片數量的方式提高了模型的正確識別率。在Matlab Transfer Learning App中,使用9個預訓練的CNN卷積神經網路模型進行了識別實驗,結果顯示ResNet101模型的識別率最高,其次是Xception模型,而NASNetMobile模型表現最差。本研究的結果顯示,Teachable Machine是一個方便易用的平台,可以快速構建AI模型;遷移學習是一個快速且有效的方法,可以利用預訓練的模型來加快新模型的訓練過程。使用者可以根據自己的需求選擇最適合的方法和模型。

並列摘要


This study investigates the ability to use two methods, Teachable Machine, and Matlab Transfer Learning App, to implement AI models to automatically recognize metal parts in images. A successful AI model was built on the Teachable Machine platform that can identify 10 types of metal parts, and the accuracy of the model was improved by increasing the number of training photos. In Matlab Transfer Learning App, experiments were performed using 9 pre-trained CNN convolutional neural network models for the recognition, and the results showed that the ResNet101 model had the highest recognition rate, followed by the Xception model, while the NASNetMobile model performed the worst. The results of this study demonstrate that Teachable Machine is a convenient and user-friendly platform for quickly building AI models, and transfer learning is a fast and effective method that can use pre-trained models to accelerate the training process of new models. Users can choose the most suitable method and model according to their own needs.

參考文獻


李金鴻 (2015). 應用影像辨識技術於自動化檢出之研究, 碩士論文, 南臺科技大學電機工程系.
劉博獻 (2015). 先進卷積式神經網路應用於深度學習及影像通用分類, 碩士論文,國立臺灣科技大學電機工程系.
陳昶宏 (2016). 影像辨識機器人的雲端運算與本地運算之比較, 碩士論文, 國立雲林科技大學電子工程系.
洪執善 (2016). 工業控制平台上的影像辨識應用與研究, 碩士論文, 聖約翰科技大學電子工程系.
郭昶逵 (2017). 強化卷積神經網路深度學習用於剩餘可用壽命預估, 碩士論文, 國立中央大學資訊工程系.

延伸閱讀