透過您的圖書館登入
IP:18.221.99.121
  • 期刊

Enterprise Forecasting using Key Audit Matters

以關鍵查核事項進行企業預測

摘要


Most investors regard enterprise forecasting as a valuable tool when making investment decisions; in addition to reflecting the operational performance of an enterprise at a given time in the future, it helps internal business managers to make intelligent management decisions. However, when undertaking enterprise forecasting, it is crucial to obtain key information and use the most appropriate approach to generate forecasting information so that investors can thoroughly understand the status of a company and use the forecasting information to determine whether or not to invest in the company. Key audit matters (KAM) are the most important matters to the audit of the financial statements of the current period according to the professional judgment of the certified public accountant. The disclosure of KAM aims to enhance information transparency and value relevance of audit reports. However, the disclosure of KAM is still inconclusive with respect to whether it can improve the usefulness of enterprise forecasting. This study performed textual analysis of key audit matters (KAMs) to forecast enterprise operational performance, credit risk, and stock price, to provide a reference for investors when making decisions, thereby enabling them to increase their profits. Our research objective was achieved by designing an enterprise forecasting process based on KAMs, developing related enterprise forecasting techniques, and demonstrating and evaluating the proposed enterprise forecasting approach.

並列摘要


企業預測已被視為重要的投資決策資訊,其除了能反映出該企業未來一段期間的經營表現之外,亦能幫助企業內部經營管理者做好管理決策。在進行企業預測時,最重要的是能夠獲取關鍵性資訊,並以最適之方法產生預測資訊,讓投資人能更加瞭解企業的狀況,以作為企業投資與否之重要依據。因此,如何協助投資人有效地進行企業預測已成為投資決策重要的研究課題。本研究主要目的在於使用關鍵查核事項進行企業經營績效、信用風險及股價預測,以提供投資者進行投資決策之參考依據,進而提升其獲利能力。本研究主要研究項目包括關鍵查核事項為基之企業預測流程設計、關鍵查核事項為基之企業預測方法發展以及關鍵查核事項為基之企業預測方法驗證與評估。

參考文獻


Al-Dmour, A. H.,Al-Dmour, R. H.(2018).Applying multiple linear regression and neural network to predict business performance using the reliability of accounting information system.International Journal of Corporate Finance and Accounting.5(2),12-26.
Chen, C. T.,Hung, W. Z.(2018).Using heuristic decision classifier predict the operational performance of enterprise in Taiwan.International Journal of Management and Applied Science.4(9),64-67.
Chen, M. Y.,Liao, C. H.,Hsieh, R. P.(2019).Modeling public mood and emotion: Stock market trend prediction with anticipatory computing approach.Computers in Human Behavior.101,402-408.
Chen, W.,Yeo, C. K.,Lau, C. T.,Lee, B. S.(2018).Leveraging social media news to predict stock index movement using RNN-boost.Data & Knowledge Engineering.118,14-24.
Chen, Y. J.,Wu, C. Y.(2021).Predicting a corporate financial crisis using letters to shareholders.Soft Computing.25(5),3623-3636.

延伸閱讀