透過您的圖書館登入
IP:216.73.216.250
  • 期刊
  • OpenAccess

Privacy-Preserving Data Mining for Horizontally-Distributed Datasets using EGADP

並列摘要


In this paper, we investigate the possibility of using EGADP for protecting data in horizontallydistributed datasets. EGADP [10] is a new advanced data perturbation method that masks confidential numeric attributes in original datasets while reproducing all linear relationships in masked datasets. It is developed for centralized datasets that are owned by one owner, and no study (to the best of our knowledge) suggests and investigates empirically the possibilities of using it to protect distributed confidential datasets. This study is intended to fill this gap.

並列關鍵字

無資料

延伸閱讀