The objective of this research was to study the performance of cryogenically treated HSS drills for drilling gray cast iron. Drilling experiments were conducted with cutting speeds: 560, 710, 900, 1120 rpm, feeds: 0.05, 0.08, 0.12, 0.19 mm/rev and a constant drill diameter: 8 mm. The cryogenic treatment cycle consisted of cooling the test samples from room temperature to cryogenic temperature of -178.9℃ in 3 h, soaking at cryogenic temperature for 24 h and w arming to room temperature in about 5 h. The thrust force and torque were measured using drill tool dynamometer. The surface roughness (Ra, Rz, Rq and Rt) of the drilled specimens were measured using talysurf. The experimental lay-out was designed using Taguchi's Orthogonal Array technique. Signal-to-Noise Ratio analysis was performed to identify the effect of the parameters on the response variables. The treated drills were found superior to the non-treated in all the test conditions in terms of lesser thrust force, torque and also superior surface roughness of the specimens. The tool wear was studied using SEM.