Position of actuators plays an important role in active vibration control, which affects not only the performance of vibration control but also the stability of the whole system, especially for flexible structures. In this paper, dynamic sensitivity analysis method was used to derive an optimization criterion for Piezoelectric Stack Actuator (PSA), this criterion was only related to the dynamic characteristics of the structure itself and the features of disturbances, but was not affected by initial conditions and control methods. Then by using this criterion, optimal placement of the piezoelectric actuator of a Whole-Spacecraft Vibration Isolator (WSVI) was studied, and vibration control effect of random position and optimal position was compared; simulation results verified the validity of the criteria, and showed that the optimized location of actuator could greatly enhance the actuation efficiency and vibration control effect.