We investigated the transcriptional regulation of anthocyanin biosynthesis in hairy roots system by ectopically expressing Rosea1 and Delila and we found something different from previous research. The RT-PCR results revealed that Rosea1 could activate early and late biosynthetic genes tested, including CHS, DFR and ANS. Delila enhanced the expression of CHS weakly, but did not influence DFR or ANS. The two regulators, Rosea1 and Delila, failed to interplay each other. It was speculated that Delila would be ineffective in the absence of Rosea1, another MYB factor specifically controlling CHS may exist. This investigation provided a new way to increase anthocyanin content by over expressing a MYB factor, potentially to be used in the field of agriculture and food