開發具有可拉伸性的高分子半導體材料是仿生皮膚電子最重要的關鍵技術。然而,可拉伸高分子半導體材料缺乏可擴展的圖案製作能力,限制了可拉伸電晶體元件的發展。為解決此問題,我們通過硫醇烯化學反應(Thiol-ene reaction)開發了可光固化的可拉伸高分子混摻,將具有高電荷遷移率的diketopyrrolopyrrole(DPP)施體-受體共軛高分子和高拉伸性的彈性橡膠(Poly(styrene-butadiene-styrene),SBS)。硫醇烯反應可以選擇性地用烯烴或乙烯基基團交聯橡膠,而不損壞共軛高分子的電子性能。嵌入彈性高分子基材中的共軛高分子鏈引起半互穿高分子網絡(Semi-Interpenetrating polymer network SIPN)。硫醇烯交聯網絡可以提供出色的溶劑抵抗性,並且增強了嵌入共軛高分子的可拉伸性。此高分子混摻使用傳統微影製程,可獲得特徵尺寸約為10μm的完整圖案薄膜。此外,此SIPN高分子電晶體在施加從0%到100%的應變時,依舊能夠顯示出1.18 cm^2V^(-1)s^(-1)的遷移率。在經過500次循環拉伸測試後,電洞遷移率也仍然保持在0.87cm^2V^(-1)s^(-1),顯示其優異的機械特性與電荷傳輸穩定性。此研究為光固化高分子半導體材料的分子設計提供了全新的新思路,未來將有助於應用大規模生產可拉伸電子電路設計與製造。
Stretchable polymer semiconductors are crucial materials for the development of biomimetic skin electronic devices. However, stretchable polymer semiconductors lack scalable patterning capabilities, which limits the advancement of stretchable electronics. To address this issue, we have developed photo-curable stretchable polymer blends through thiol-ene chemistry, incorporating high charge-mobility diketopyrrolopyrrole (DPP)-based donor-acceptor conjugated polymers and highly stretchable elastomer, poly(styrene-b-butadiene-b-styrene) (SBS). The thiol-ene reaction enables selective crosslinking of the rubber with either an alkene or vinyl groups, without compromising the electronic properties of the conjugated polymer. The incorporation of the conjugated polymer chains into the elastic polymer matrix leads to the formation of a semi-interpenetrating polymer network (SIPN). In the SIPN, the thiol-ene crosslinked elastomer network provides excellent solvent resistance and enhances the stretchability of the embedded conjugated polymer. This polymer blend can be processed using conventional photolithography and yields patterned films with feature sizes of approximately 10 μm. Furthermore, the SIPN polymer transistors exhibit increased mobility of up to 1.18 cm^2V^(-1)s^(-1) when subjected to strains from 0% to 100%. Additionally, even after 500 cycles of stretching tests, the hole mobility remains at 0.87 cm^2V^(-1)s^(-1), indicating excellent mechanical properties and electrical stability. This study provides a new perspective on the molecular design of photo-curable polymer semiconductor materials, which will contribute to the development of large-scale production of stretchable electronic circuits and manufacturing.