透過您的圖書館登入
IP:216.73.216.82
  • 期刊

磷脂濃度比例對微脂粒安定性之影響

Influence of Phospholipids Concentrations on the Stability of Liposome

摘要


本研究利用高壓均質技術製備包覆維生素C之微脂粒,首先探討磷脂濃度(AL-2%、AL-4%)對微脂粒粒徑之影響,並進一步設計加速破壞試驗搭配清除自由基(DPPH)方法,探討包覆維生素C微脂粒之安定性。研究顯示磷脂濃度越高則粒徑越大,AL-2%為較佳磷脂濃度,粒徑平均為520nm。將維生素C、AL-2之樣品溶液稀釋10倍,在結果顯示中,利用紫外線破壞顯示中AL-0.2%微脂粒可以有效保護維生素C高達89.18%,可有效對紫外線破壞能力;高溫氧化快速破壞顯示中AL-0.2%微脂粒可有效保護維生素C達48.32%,顯示出經破壞後,可保護對高溫氧化快速破壞能力;氧化破壞顯示中AL-0.2%微脂粒可以有效保護維生素C達35.72%,有此可證經破壞後,有效保護對氧化破壞能力。由此上述顯示經微脂粒包覆後,皆可有效的保護維生素C減緩對紫外線、高溫氧化及氧化破壞。另經28天AL-2%微脂粒安定性觀察結果,顯示粒徑平均581.7nm變化不大,顯示本新式微脂粒原料商品化之可行性高,可改善化妝製品中活性成分不安定的現象。

並列摘要


The study was conducted by encapsulating vitamin C with liposomes through high pressure homogenization technique. First, we explored the phospholipids concentration (AL-2%, AL-4%) on the effect of liposome size, and then designed the accelerated destruction test by using free radical scavenging (DPPH) method to investigate the stability of the vitamin C liposome. Studies have indicated that the higher the concentration of phospholipid, the larger particle size. AL- 2% is the preferred concentration, and the average particle diameter is 520 nm. The vitamin C and AL-2 were both diluted 10-fold in the sample solution. The UV damage test has shown that AL-0.2% liposome can effectively protect Vitamin C up to 89.18% aginst UV damage. Under the rapid oxidation test in higher temperature, AL-0.2% liposome also provides the protection up to 48.32%. Oxidative damage test presents that AL-0.2% liposome can effectively protect up to 35.72% of vitamin C. The ability to effectively protect against oxidative damage. Thus the result displays the liposome can effectively protect vitamin C to reduce the damages from UV high temperature oxidation and oxidative damage. After 28 days AL-2% liposome stability observations, the average particle size of 581.7 nm show little change. This result indicated the commercial feasibility of the new liposome, which can improve the unstable phenomenon of the active ingredients in cosmetic products.

參考文獻


Wagner, A., & Vorauer-Uhl, K. (2010). Liposome technology for industrial purposes. Journal of drug delivery, Volume 2011. Article ID 591325, 9 pages.
Bajoria, R., & Sooranna, S. R. (1998). Liposome as a drug carrier system: Prospects for safer prescribing during pregnancy: A review. Placenta, 19, 265-287.
Dhoot, N. O., & Wheatley, M. A. (2003). Microencapsulated liposomes in controlled drug delivery: strategies to modulate drug release and eliminate the burst effect. Journal of pharmaceutical sciences, 92(3), 679-689.
Dreher, F., Walde, P., Walther, P., & Wehrli, E. (1997). Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. Journal of controlled release, 45(2), 131-140.
Bachmann, D., Brandl, M., & Gregoriadis, G. (1993). Preparation of liposomes using a Mini-Lab 8.30 H high-pressure homogenizer. International journal of pharmaceutics, 91(1), 69-74.

延伸閱讀