透過您的圖書館登入
IP:18.188.103.74
  • 期刊

同步磁阻馬達之單位電流最大轉矩控制器設計

The Design for Maximum Torque per Ampere Control of Synchronous-Reluctance Motors

摘要


同步磁阻馬達是一種同步機,比感應馬達有較高的能源轉換效率,它的轉子不像一般的永磁同步馬達安裝磁鐵,故不會有馬達因經年累月運轉造成轉子磁鐵磁性減弱的問題,它的轉子材料是如矽鋼片的導磁材料,藉由轉子凸極現象造成磁阻的不均勻,來產生力矩而轉動,故其構造簡單,具有堅固的特性,近年來吸引著工業界的注目。精確的馬達模型及控制器設計,使其性能優化是非常重要的。本文設計同步磁阻馬達的單位電流最大轉矩(maximum torque per ampere, MTPA)控制器,是向量控制器設計的延伸,得出d軸電流參考命令與q軸電流參考命令的關係,MTPA控制的q軸電流命令是由轉速控制器產生;d軸電流命令是q軸電流命令的負值,如此可得到最佳化的設計,提高效率。模擬結果顯示在相同的轉速命令與負載轉矩之下,在MTPA控制情況下,可得最小定子電流大小的值,因此是最佳化的設計,在加載情況下,對給予的轉速命令有理想的轉速與電流響應。

並列摘要


The synchronous reluctance motor (SynRM) is one kind of synchronous machines. Its energy efficiency is higher than the induction motors. The SynRM is unlike the permanent magnet synchronous motor (PMSM), in which the rotor is equipped with permanent magnets and the magnetism will decrease after long-time rotation. The rotor material of SynRM is high-permeability material such as silicon steel. The torque generation for rotation of the SynRM is by means of the reluctance unbalance due to the salient pole effect. Recently, with the features of simple and rugged construction, the SynRM has received a lot of attention in the industry. So, it is important for both the modeling of the SynRM motor and the control design for optimizing the motor performance. This paper presents the design for the maximum torque per ampere (MTPA) control of synchronous reluctance motors. The design is the extension of vector control design. In the MTPA control design, the relationship between the d-axis current command and the q-axis current command can be obtained. The q-axis current command of the MTPA control is generated from the speed controller output. The d-axis current command is the negative of the q-axis current command. In this case, the design is optimized and hence the efficiency is increased. The simulation results demonstrate that under the same speed command and load torque, and with the MTPA control, the least magnitude of the current can be obtained; and therefore an optimized design is achieved. For a given speed command and load torque, the simulation also shows good speed and current dynamic responses.

參考文獻


蔡明發,徐偉軒,陳柏志,鄭詠仁,顏鴻程,陳俊漢(2015).同步磁阻馬達之向量控制器設計.中華民國第 36 屆電力工程研討會.(中華民國第 36 屆電力工程研討會).:
Fletcher, J. E.,Williams, B. W.,Green, T. C.(1995).Loss reduction in a synchronous reluctance drive system using DSP control.Power Electronics Specialists Conference, 1995. PESC '95 Record., 26th Annual IEEE.(Power Electronics Specialists Conference, 1995. PESC '95 Record., 26th Annual IEEE).:
Farhan, A.,Saleh, A.,Shaltout, A.(2013).High performance reluctance synchronous motor drive using field oriented control.U2013 Proceedings of International Conference on Modeling, Identification & Control (ICMIC).(U2013 Proceedings of International Conference on Modeling, Identification & Control (ICMIC)).:
Tsai, M. F.,Tseng, C. S.,Chen, C. H.,Cheng, Y. J.,Yang, C. H.(2016).Phase-variable modeling of a synchronous reluctance motor using PSIM.IEEE SPEC 2016.(IEEE SPEC 2016).:
Liu, T. H.,Hsu, H. H.(2007).Adaptive controller design for a synchronous reluctance motor drive system with direct torque control.IET Electr. Power Appl..1(5),815-824.

延伸閱讀