This article presents a digital twin system for a five-axis machine tool equipped with Siemens controllers. The system integrates techniques such as interpolation, servo drive modeling, and structural dynamic analysis to predict contour errors generated during the five-axis machining process and achieve interpolation parameter adjustments. Initially, the Siemens controller's automatic servo tuning function is employed for system identification, resulting in optimized servo parameters and a virtual machine tool model, while ensuring compatibility with five-axis interpolation. Subsequently, position transfer functions are derived to obtain analytical solutions for contour errors in linear and circular path trajectories, followed by the use of KAKINO standard path tuning to adjust key interpolation parameters. Finally, the NAS979 cutting test is employed to validate that the proposed method can further enhance the machining accuracy and quality of the five-axis machine tool.