Tungsten carbide molds have the advantages of high hardness, good corrosion resistance, high temperature resistance, impact resistance, small thermal expansion coefficient and long life. And are often widely used in the production of stamping and metal powder pressing molds in the fields of electronics, automobiles, mechanical hardware, household appliances, and aerospace. Tungsten steel molds, which combine many application advantages, are difficult to produce and process due to their high hardness. This research proposes a method different from the traditional use of diamond rod grinding and electrical discharge machining (EDM). In this article, the electrochemical grinding (ECG) process with high processing efficiency and the direct milling process with polycrystalline diamond (PCD) tools with high processing accuracy and high surface quality are used to improve the bottleneck of existing tungsten carbide mold processing efficiency, increased costs caused by electrode/tool wear, residual stress on the mold surface, and heavy reliance on manual polishing.