透過您的圖書館登入
IP:216.73.216.100
  • 期刊

智慧車輛感測資料監控與分析

Intelligent Vehicle Sensor Data Monitoring and Analysis

摘要


本文以「智慧車輛感測資料監控與分析」為核心,整合車輛感測器數據、AI演算法與視覺化介面,全面提升車隊營運效率與安全性。透過即時監控機制,可快速獲取並分析車輛動態資訊,包括車輛耗能與動力狀況、行駛數據與異常情況。同時,本系統導入預測性維護觀念,以深度學習技術辨別潛在故障風險,協助車隊管理者在故障出現前即時採取措施,減少維修成本與停機時間,並大幅提升行車安全。整合性的平台設計亦便於後續功能擴充,為智慧交通管理奠定堅實基礎。

並列摘要


This article focuses on "Intelligent Vehicle Sensor Data Monitoring and Analysis," incorporating vehicle sensor data, AI algorithms, and a visualization interface to significantly enhance fleet operational efficiency and safety. Through real-time monitoring, dynamic information-such as energy consumption, power status, driving data, and anomaly trends-can be rapidly acquired and analyzed. Additionally, predictive maintenance methodologies are integrated, utilizing deep learning to detect potential faults, enabling fleet managers to take timely action before failures occur. This approach reduces maintenance costs, minimizes downtime, and substantially improves driving safety. The comprehensive platform design also facilitates future feature expansion, laying a solid foundation for intelligent transportation management.

參考文獻


Cortes, C.,Vapnik, V.(1995).Support-Vector Networks.Machine Learning.20(3),273-297.
Ho, T. K.(1995).Random Decision Forests.Proceedings of 3rd International Conference on Document Analysis and Recognition.(Proceedings of 3rd International Conference on Document Analysis and Recognition).:
Hochreiter, S.,Schmidhuber, J.(1997).Long Short-Term Memory.Neural Computation.9(8),1735-1780.
Ester, H.,Kriegel, J.,Sander, J.,Xu, X.(1996).A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96).(Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)).:

延伸閱讀