In this work, we present methods to obtain a neural optical character recognition (OCR) tool for article blocks in a Republican Chinese newspaper. Our basis is a small fraction of the image corpus for which text ground truth exists. We introduce a character segmentation method which produces over 90,000 labeled images of single characters and train a GoogLeNet classifier as an OCR model. In addition, we create synthetic training data from character images extracted from Song-Ti fonts. Randomly augmented on the fly and used for pre-training, they increase OCR accuracy from 95.49% to 96.95% on our test set. Finally, we employ post-OCR correction based on a pre-trained masked language model and present heuristics to select the required hyperparameters, by which we are able to correct 16% of remaining classification errors, increasing accuracy on the test set to 97.44%.
本文為研發使用神經網絡的光學字元辨識(optical character recognition, OCR)工具提出了一些方法,以辨識民國時期中文報紙中的文章部分。這項工作的基礎為一小部分已存在基準真相(ground truth)的圖像語料。我們引入了一種字符分割方法,從而生成了超過90,000個有標籤的單一字符圖像,並且訓練了一個GoogLeNet分類器作為OCR模型。此外,我們從宋體字體中提取字符圖像,以此製作了訓練數據。這些圖像被隨機增強並被用於預訓練,測試集的OCR準確率由95.49%提高到96.95%。最後,我們採用了基於預訓練遮罩語言模型(Masked LM)的OCR後校正,並提出啟發式方法來選擇所需的超參數。通過這些方法,我們能夠校正16%的剩餘分類錯誤,將測試集的準確率提高到97.44%。