透過您的圖書館登入
IP:18.191.209.202

摘要


In this note,we consider the equations Δu= Ω∇u with the unknown vector ^(u∈W^(1,2)) (B_1^n, R^m). here Ω = (Ω_j^i)_(1≤I, j≤m)∈ L^2(R^n, R^m) If there exists a matrix valued function A,A^(-1)∈W^(1,2)(R^n)?L^∞(R^n), such that Ω = -A∇A^-, then the solution u∈W^(2,1)(B_(1/4)^n). In particular, the equations Δu =Ω∇u with u, θ∈W^(2,1)(B_1^n, R^m), Ω= (The equation is abbreviated), then the solution u ∈W^(2,1)(B_(1/4)^n).

參考文獻


C. Fefferman and E. Stein. Hp spaces of several variables. Acta Math., 129,137-193,1972.
T. Riviere. Conservation laws for conformally invariant variational problems. Invent. Math., 168,1-22, 2007.
F-H,Lin; T.Riviere. Energy quantization for harmonic maps. Duke Math. J. 111,no. 1, 177—193,2002.
H. Wente. An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl., 26,318-344, 1969.
Majda;A. Bertozzi. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002

延伸閱讀


國際替代計量