透過您的圖書館登入
IP:13.58.39.209
  • 會議論文
  • OpenAccess

以深度學習與轉移學習達成本土化之戶外停車位即時辨識

摘要


為強化戶外停車位即時辨識的應用,本研究運用Amato, Carrara, Falchi, Gennaro & Vairo [1]的資料集,使用YOLO3v3訓練出正確率極佳的模型,相較於先前之研究,本研究同時達到減少設備和時間上的成本。根據不同的實驗結果,本研究分析模型在何種環境及情境將會受到影響,並且在國內收集停車位照片進行測試,確認透過轉移學習來達成本土化之應用,確實可行。

並列摘要


To improve on outdoor parking lot occupancy detection, we use YOLOv3 to produce a model with excellent accuracy based on the data set of Amato, et al. [1]. Additionally, the cost of equipment and time can be reduced. We analyze various experiment results to determine the effects of environmental and situational factors. We further collect a small localized outdoor parking lot data set in Taiwan, the results of the localized experiments confirm the applicability of transfer learning.

延伸閱讀