透過您的圖書館登入
IP:3.135.190.81
  • 學位論文

微分積分法之改良並求解Euler-Bernoulli的問題

A Modification of Differential Quadrature Method and Solving the Problems of Euler-Bernoulli Beam

指導教授 : 劉進賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微分積分法 (DQM) 應用於數值計算離散化已行之有年,其中權重(weighting coefficients)為微分積分法中最重要的參數。運用多項式測試函數( test functions) 為其中一種方法,其原理在於用多項式來近似所求得的解;當把整個區域劃分成n個格點,我們使用(n-1)個階層的多項式作為測試函數,其存在之Vandermonde矩陣為一著名的高度病態矩陣;而其矩陣的反矩陣求解一直為數值方法中困難的課題。然而區域化微分積分法解決其病態矩陣的情況,並成功地應用於二維問題。 在此篇論文中,我們對於微分積分法提出一個新的看法(NSDQ),此方法為全域化微分積分法。當把整個區域劃分成n個格點,我們僅使用(m-1)個階層的多項式作為測試函數,而m的數值非常小於n。我們發現用(m-1)個階層的多項式已足夠用來表示所求得的解,並改善了病態矩陣的問題。文中,我們結合擬時間積分法,成功地求解二維橢圓形偏微分方程。另外,我們透過SBCGE方法的觀念,將此法運用於Euler-Bernoulli梁的變形問題,其非常小的誤差值亦說明了此新方法的精確度。

並列摘要


When the localized differential quadrature (LDQ) has been successfully applied to solve two-dimensional problems, the global method of DQ still has a problem by solving the inverse of ill-posed matrices. Before, when one uses (n-1)th order polynomial test functions to determine the weighting coefficients with n number of grid points, the resultant n×n Vandermonde matrix is highly ill-posed and its inverse is hard to solve. Now we introduce a new insight into the DQ method (NSDQ) that using (m-1)th order polynomial test functions by n number of grid points and the size of Vandermonde matrix is m×n, of which m is much less than n. We find that the (m-1)th order polynomial test functions are accurate enough to express the solutions, and the novel method significantly improves the ill-condition of algebraic equations. Such the NSDQ method as combined with the FTIM (Fictitious Time Integration Method) can solve 2-D elliptic type PDEs. By implementing the SBCGE method in the DQ, it is also successfully applied in free and forced vibrations problems of the Euler-Bernoulli beam with the CGM and the RK4 method. There are some examples tested in our thesis and the numerical errors are found to be very small.

參考文獻


Atluri, S. N.; Zhu, T. L. (1998a): A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comp. Mech., vol. 22, pp. 117-127.
Atluri, S. N.; Zhu, T. L. (1998b): A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comp. Model. Simul. Eng., vol. 3, pp. 187-196.
Bellman, R.; Casti, J. (1971): Differentail quadrature and long-term integration. J. Math. Analysis Appl., vol. 34, pp. 235-238.
Bellman, R.; Kashef, B. G.; Casti, J. (1972): Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys., vol. 10, pp. 40–52.
Gohberg and Olshevsky (1997): The fast generalized Parker-Traub algorithm for inversion of Vandermonde and related matrices. J. Complexity, vol. 13, pp. 208-234.

延伸閱讀