微發光二極體(micro-LED)在近年來逐漸受到重視,因其與傳統的液晶顯示器(LCD)、次毫米發光二極體(mini-LED)、有機發光二極體(OLED)相比有不少的優勢,例如高亮度、高對比、高解析度及反應時間快、更節能等特性。此外,微發光二極體的尺寸約比次毫米發光二極體還小約0.1毫米,已經達到了肉眼難以分辨的程度,因此可以將三原色的晶粒拼成一個像素點,不需要濾光片或液晶層即可達到更高的解析度。但隨著微發光二極體的尺寸不斷縮小,其面臨著發光效率大幅降低的問題。再者,由於多重量子井中氮化銦鎵(InGaN)及氮化鎵(GaN)晶格差異所產生的應力,會使微發光二極體在低電流時有嚴重的量子侷限斯塔克效應(QCSE),隨著注入電流提升,會使微發光二極體產生波長藍移。為了應對這些問題,本篇論文利用離子佈植技術將高濃度的離子注入綠光微發光二極體的側壁,進而增加側壁電阻並減少漏電流產生,接著利用表面粗化技術降低波長位移的問題。 本篇論文顯示了離子佈植顯著改善微發光二極體的電學特性,導致正向電流顯著增加,反向電流顯著減少。此外,在光學特性上也有顯著提升。以離子佈植能量為60keV且發光面積為10 × 10 μm2為例,其與沒有進行離子佈植且發光面積為100 × 100 μm2的元件相比,僅下降了21.299%的光輸出功率密度;而與沒有進行離子佈植且發光面積相同(10 × 10 μm2)的元件相比,其外部量子效率(IQE)的峰值高了1.22倍。此外,利用表面粗化技術,可以將平均波長位移減少0.74奈米。本篇論文的研究成果展示了將離子佈植及表面粗化技術相結合以提高微發光二極體表現的巨大潛力。
Micro-LED displays present a pressing issue of reduced optical output efficiency as LED chip sizes continue to shrink. In order to address this challenge, we propose an innovative approach using ion implantation to deliberately induce sidewall damage in LEDs, thereby enhancing sidewall resistance and minimizing leakage current. Our comprehensive study reveals that ion implantation significantly improves the electrical properties of micro-LEDs, resulting in notable increases in forward current and reductions in reverse leakage. These improvements stem from the successful suppression of sidewall defects. Specifically, our investigation on the A-10 micro-LED demonstrates only a modest 21.299% decrease in output power density compared to the N-100, while concurrently exhibiting a 1.22 times higher peak internal quantum efficiency (IQE) value than the N-10. Furthermore, the introduction of surface texture proves to be an effective method for reducing the average wavelength shift by 0.74nm, signifying a step forward in optimizing the optical characteristics of micro-LEDs. Our findings highlight the promising potential of combining ion implantation and surface texture techniques to enhance the performance of micro-LED displays. By overcoming the efficiency challenges, micro-LEDs can emerge as a more viable solution for high-performance displays and various optoelectronic applications. The successful implementation of these techniques can pave the way for next-generation display technologies, providing improved visual experiences and energy-efficient solutions for diverse industries.