透過您的圖書館登入
IP:216.73.216.59
  • 學位論文

設施葉菜生長排程決策輔助系統建置之研究

Research on the Construction of Decision-making Auxiliary System for Facility Leafy Vegetable Growth Scheduling

指導教授 : 楊豐安 張靜貞

摘要


本研究旨在規劃建置一個農場智慧接單與生產排程管理系統,通過專家深度訪談歸納出建置農場生產排程決策輔助中9種要素組合與原理依據,並嘗試以層級分析法(Analytic Hierarchy Process, AHP),建構前開要素指標應具備的主要指標與次要指標,再經專家問卷調查兩兩指標之間的優判所得結果,得到各主要與次要評估指標之權重,據以設計系統所需功能、表單、輔助決策功能與決策流程,期望透過此研究設計,藉由物聯網技術與大數據分析技術,與日後規劃之系統運作能夠結合,成為一套農場訂單排程生產策輔助系統。實證分析結果發現,在系統運作主導之下,預計移苗盤數與實際盤數之正確率佔94.8%;預計採收日與實際採收日之正確率達92.7%,顯示此系統具有決策輔助之效果,除了可確保契約產量並提升接單率外,進而可優化資源配置,並提升經營效益,實現設施葉菜農場生產的智能化管理。

並列摘要


The purpose of this research is to plan and build a smart order receiving and production scheduling management system for greenhouse-grown leafy vegetables. Through in-depth interviews with experts, it summarizes the combinations and principles of nine elements in the establishment of farm production scheduling decision support system.The hierarchical analysis method (Analytic Hierarchy Process, AHP) is adopted to analyze the main indicators and secondary indicators that should be possessed before the construction of the factor indicators. The weight of each main and secondary evaluation indicator is obtained through the pairwise comparison results of the expert questionnaire survey. The results of AHP are then used in designing the functions, forms, auxiliary decision-making functions and decision-making process required by the system. It is expected that through this research and design, it can be combined with the system operation plan in the future to become a farm order scheduling production decision-making auxiliary system. Through the Internet of Things technology and big data analysis, this application realizes the intelligent management of greenhouse production. The results of the empirical analysis found that the accuracy rate of system dominance was 94.8% between the predicted number of transplanted seedling trays and the actual number of transplanted seedling trays; the accuracy rate of the estimated harvest date and the actual harvest date was 92.7%. These results suggest that the system not only can ensure contracted output to increase order acceptance rate, but also can optimize resource allocation to improve operating efficiency.

參考文獻


尤優佳,2018。《桃園八德地區設施短期葉菜生產成本與價格分析》碩士論文,臺灣大學農業經濟學研究所。
王興國,2006。《科學工業園區開發工程分標原則之研究》碩士論文,交通大學工學院碩士在職專班營建技術與管理學程。
江衍源,2011。《企業導入雲端運算模式之決策分析:以台灣某汽車公司為例》碩士論文,臺灣大學資訊管理學研究所。
行政院,2022。智慧國家方案(2021-2025年)2022年階段成果報告,1-9。
周倖价,2019。《結合虛實系統與邊緣運算技術應用於智慧工廠的生產監控與排程系統之研究》碩士論文,交通大學管理學院工業工程與管理學程。

延伸閱讀