急性骨髓性白血病(Acute myeloid leukemia, AML)是一種致命的血液疾病,由異常白細胞引起並在骨髓中發展。它會導致血小板減少,增加出血和感染的可能性。本論文開發了一個機器學習集成(ensemble)模型,使用國立台灣大學附設醫院 1213 名 AML患者的數據集,對AML風險進行分層,本研究提出的方法結合機器學習集成模型預測的結果和2017年歐洲白血病網(European LeukemiaNet 2017, ELN 2017)預測的結果,進一步合成最終的集成模型Ensemble (ML+ELN),提出了初步的臨床風險分層建議。與ELN 2017臨床診斷建議相比,本研究的風險分層建議提供了最佳區分各種風險的能力,c-index 由0.64提升至0.66。特別在區分不利風險和中等風險上,相較於2017 ELN的p值(p-value)平均0.13,本研究的風險分層建議達到p值平均0.001的表現。
Acute myeloid leukemia (AML), a fatal blood condition, is brought on by abnormal white blood cells and develops in the bone marrow. It results in a decrease in platelets, raising the possibility of bleeding and infection. This study developed an ML-based ensemble model to stratify the risk of AML using a dataset containing 1213 AML patients from the National Taiwan University Hospital. Combining the ML-based ensemble model predictions and the European LeukemiaNet (ELN) 2017 predictions, the study represents a final ensemble model (ML+ELN) for initial clinical risk stratification recommendations. Compared to the clinical diagnostic recommendations ELN 2017, the proposed risk stratification proposal provides a superior capacity to distinguish various risks and improve the c-index from 0.64 to 0.66. Especially in distinguishing unfavorable risks from moderate risks, compared with the average p-value (p-value) of 0.13 in 2017 ELN, the proposed risk stratification proposal achieves excellent performance with an average p-value of 0.001.