透過您的圖書館登入
IP:18.216.70.76
  • 學位論文

調和分析中的扁平與非扁平算子:時頻分析與震盪積分

Flat and NonFlat Operators in Harmonic Analysis: Time-Frequency Analysis and Oscillatory Integral

指導教授 : 沈俊嚴
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文討論調和分析中用來估計扁平與非扁平算子勒貝格範數有界性的兩種工具,時頻分析與震盪積分。在本文中,我們以自洽的方式探討五個與此領域相關的工作。

並列摘要


We study two kinds of tools, time-frequency analysis and oscillatory integral, dealing with the Lp boundedness of some prototype of flat and nonflat operaotors in Harmonic analysis, respectively. We verified five important works in detail and present them in a self-contained way.

參考文獻


[Rot53]Klaus F Roth. “On certain sets of integers”. In:Journal of theLondon Mathematical Society1.1 (1953), pp. 104–109.
[Car66]Lennart Carleson. “On convergence and growth of partial sums ofFourier series”. In:Acta Math.116 (1966), pp.135-157.
[Hun68]Richard A Hunt.On the convergence of Fourier series, Orthogo-nal Expansions and their Continuous Analogues (Proc. Conf., Ed-wardsville, Ill., 1967). 1968.
[Sj ̈o71]Per Sj ̈olin. “Convergence almost everywhere of certain singular in-tegrals and multiple Fourier series”. In:Arkiv f ̈or Matematik9.1(1971), pp. 65–90.
[Fef73]Charles Fefferman. “Pointwise Convergence of Fourier Series”. In:Annals of Mathematics98.3 (1973), pp. 551–571.issn:0003486X.

延伸閱讀