透過您的圖書館登入
IP:3.138.119.75
  • 學位論文

探討參與調控噬中性顆粒球產生白血球間素-17之轉錄因子

To Investigate the Transcription Factors Involved in IL-17 Production by Neutrophils in Response to IL-23 Stimulation

指導教授 : 伍安怡

摘要


白血球間素-17 (Interleukin-17, IL-17) 在宿主抵抗病菌中扮演關鍵角色。也有報導指出 IL-17 與自體免疫疾病病因有關。 IL-17為 Th17主要效應細胞激素, IL-23則可維持並擴大 Th17細胞群。對於 Th17細胞的 IL-23/IL-17訊息傳遞路徑已有相當多的研究。近年來越來越多的證據顯示,發炎反應的早期,許多先天免疫細胞會產生 IL-17,且這些細胞多位於與黏膜免疫有關的位置,如腸道、固有層、皮膚、肺等處。當這些先天免疫細胞感受到壓力、損傷或病原入侵時便會產生 IL-17。然而目前對於先天免疫細胞產生 IL-17的調控機制尚不十分清楚。我的研究重點為探討哪些轉錄因子參與調控噬中性顆粒球產生 IL-17。 我的實驗結果顯示未被刺激的 thioglycollate (thio)-elicited peritoneal cells 相較於 naive T 細胞表現較高量的 RORc、 AHR、 IL-23R 及 IL-6R。當 thio-elicited peritoneal cells 接受老鼠重組蛋白 IL-23刺激時,隨著刺激濃度增加、刺激時間增長, thio-elicited peritoneal cells 產生更多 IL-17A。但 IL-23的刺激並沒有增加 thio-elicited peritoneal cells 的 RORa、 RORc、 IRF-4或 AHR 的表現量,這些轉錄因子的 mRNA 表現量光是隨著培養時間增加就會上升。我將 thio-elicited peritoneal cells 利用 MACS 管柱區分為 Ly6G+ 及 Ly6G- 兩群細胞。 IL-23可促進 Ly6G+ 及 Ly6G- 兩群細胞產生 IL-17A,並伴隨著 RORc 的表現。 我比較野生型老鼠 (wild type, WT)、 STAT1 基因剔除鼠 (STAT1 knockout, STAT1 KO) 及 STAT3 基因剔除鼠 (STAT3 knockout, Mx-Cre+ STAT3flox/flox) 來探討噬中性顆粒球產生 IL-17A 時, STAT1 及 STAT3的參與情形。實驗結果顯示 IL-23刺激並不影響 STAT1 KO 或 STAT3 KO 細胞的 RORa、 RORc、 IRF-4和 AHR 表現量;但自 STAT1 KO 小鼠取得的 Ly6G+ 細胞接受 IL-23刺激後, RORa 表現量則比 WT 細胞低。 我亦以老鼠噬中性顆粒球細胞株 (MPRO) 作實驗,測試 MPRO 是否像初代細胞一樣經 IL-23刺激後會產生 IL-17A,以便將來可用以取代初代細胞來研究轉錄因子。我發現 ATRA 刺激後可誘導 MPRO 分化。受 ATRA 刺激的 MPRO 表現 Ly6G 並具有分葉的細胞核,且再接受 PMA 刺激後, MPRO 可產生 ROS。然而即便 ATRA 刺激後, MPRO 仍不表現 IL-23R。分化的 MPRO 接受 PMA 刺激後,再添加或不加 IL-23 刺激,依然不誘導 IL-17A 產生。 綜合上述,我的實驗結果顯示 IL-23誘導 thio-elicited peritoneal cells 以不須依賴 RORa、 RORc、 IRF-4 和 AHR 的方式產生 IL-17A,但是在未受 IL-23刺激的狀況下這些轉錄因子的 mRNA 就會隨著培養時間輕微上升。另外,Ly6G+ 及 Ly6G- 兩群細胞接受 IL-23刺激後,都會產生 IL-17A, 同時 RORc 表現量上升。與 Th17細胞相似,Ly6G+ 及 Ly6G- 兩群細胞當受 IL-23刺激後,均會以 RORγt 依賴方式產生 IL-17A。

並列摘要


Interleukin-17 (IL-17) mediates immune response and plays a crucial role in host defense against mucosal pathogens. It also contributes to the pathogenesis of autoimmune diseases. IL-17 was first discovered as an effector cytokine of Th17, and IL-23 maintains and expands the Th17 subset. The IL-23/IL-17 axis Th17 signaling pathway has been clearly defined. Recently, evidences showed that much of the IL-17 is produced by innate immune cells in the early phase of inflammation. Innate IL-17-producing cells are found to be in the mucosal tissues. They respond to stress, injury, or pathogens before Th17 cell differentiation. The mechanisms by which innate IL-17-producing cells produce IL-17 are still not clear. The aim of my study was to explore the transcription factor(s) involved in regulating neutrophil IL-17A production. The results of my study showed that thioglycollate (thio)-elicited peritoneal cells expressed higher basal levels of RORc, AHR, IL-23R and IL-6R than naive T cells. Treatment of thio-elicited peritoneal cells with mouse recombinant IL-23 induced IL-17A production in a dose- and time-dependent manner. IL-23 stimulation did not enhance the expressions of RORa, RORc, IRF-4 or AHR. Rather, the mRNA of these transcription factors increased with time in culture. Thio-elicited peritoneal cells were separated into Ly6G+ cells and Ly6G- populations by MACS column. Both Ly6G+ cells and Ly6G- cells produced IL-17A upon stimulation by IL-23 and it was accompanied by an increase of RORc expression. I compared thio-elicited peritoneal cells from wild type to STAT1 knockout (KO) and to STAT3 knockout mice (Mx-Cre+ STAT3flox/flox) to explore the involvement of STAT1 and STAT3 in neutrophil IL-17A production. The levels of RORα, RORγt, IRF-4 and AHR expression in STAT1 KO or STAT3 KO cells were not affected by IL-23 stimulation with the exception that the level of RORa expression was lower in Ly6G+ cells from STAT1 KO mice than those from wild type mice upon IL-23stimulation. I also studied mouse neutrophil cell line MPRO IL-17A production after IL-23 stimulation in the hope of replacing primary cells by the cell line for transcription factor studies. I found that stimulation by ATRA induced MPRO differentiation. Stimulated MPRO expressed Ly6G, had segmented nucleus and produced ROS in response to PMA stimulation. However, MPRO did not express IL-23R even after ATRA stimulation. Pre-treatment of differentiated-MPRO with PMA did not induce IL-17A production with or without IL-23 stimulation. In summary, I demonstrated in this study that IL-23 induced thio-elicited peritoneal cells to produce IL-17A independent of RORa, RORc, IRF-4 and AHR while the mRNA of these transcription factors increased slightly with time in culture even without IL-23 stimulation. Both Ly6G+ and Ly6G- cells stimulated by IL-23 produced IL-17A which was accompanied by RORc up-regulation. It appears that, both Ly6G+ and Ly6G- cells, like Th17 cells, produce IL-17A in a RORγt-dependent manner upon IL-23 stimulation.

並列關鍵字

IL-17A IL-23 peritoneal cells Ly6G+ cells RORγt

參考文獻


Barnes, T.C., Anderson, M.E., and Moots, R.J. (2011). The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. International journal of rheumatology 2011, 721608.
Belladonna, M.L., Renauld, J.C., Bianchi, R., Vacca, C., Fallarino, F., Orabona, C., Fioretti, M.C., Grohmann, U., and Puccetti, P. (2002). IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. Journal of immunology 168, 5448-5454.
Bermejo, D.A., Jackson, S.W., Gorosito-Serran, M., Acosta-Rodriguez, E.V., Amezcua-Vesely, M.C., Sather, B.D., Singh, A.K., Khim, S., Mucci, J., Liggitt, D., et al. (2013). Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORgammat and Ahr that leads to IL-17 production by activated B cells. Nature immunology 14, 514-522.
Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238.
Bettelli, E., Sullivan, B., Szabo, S.J., Sobel, R.A., Glimcher, L.H., and Kuchroo, V.K. (2004). Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. The Journal of experimental medicine 200, 79-87.

延伸閱讀