透過您的圖書館登入
IP:18.225.72.113
  • 學位論文

圓環弧圖上的羅馬支配問題

The Roman Domination Problem on Circular Arc Graphs

指導教授 : 陳健輝 林清池
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


圖形G上的羅馬支配是指為圖中的每個點分配一個值為0、1 或 2。每個分配值為0的點至少有一個分配值為2的鄰居點。羅馬支配的權重是所有點的分配值之總和。 圓弧圖G由圓上的一組弧F定義,其中每個弧對應於G中的一個頂點。頂點v和u是相鄰的,若且唯若它們對應的弧在圓上相交時。羅馬支配問題尋求一個羅馬支配函數,其總權重在所有可能的分配中是最小的。 在過去有人已經提出了一個O(n^2)的算法來解決圓環圖上的羅馬支配問題,本論文目標是開發一種線性算法,來有效地解決圓弧圖上的羅馬支配問題。

並列摘要


Roman domination in a graph G refers to an assignment of labels 0, 1, or 2 to each vertex. Vertices labeled 0 must have at least one neighbor labeled 2. The weight of a Roman domination is the sum of all vertex labels. A circular-arc graph G is defined by a set F of arcs on a circle, where each arc corresponds to a vertex in G. Vertices v and u are adjacent if and only if their corresponding arcs intersect on the circle. The Roman domination problem seeks a Roman domination function with the minimum total weight across all possible assignments. In previous research, an O(n^2) algorithm was proposed to solve the Roman Domination Problem on circular-arc graphs. The objective of this thesis is to develop a linear-time algorithm to efficiently address the Roman Domination Problem on circular-arc graphs.

參考文獻


S. Arnborg and A. Proskurowski. Linear time algorithms for np-hard problems re stricted to partial k-trees. Discrete applied mathematics, 23(1):11–24, 1989.
H. Balakrishnan, A. Rajaraman, and C. P. Rangan. Connected domination and steiner set on asteroidal triple-free graphs. In Algorithms and Data Structures: Third Workshop, WADS’93 Montréal, Canada, August 11–13, 1993 Proceedings 3, pages 131–141. Springer, 1993.
M.-S. Chang. Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM Journal on computing, 27(6):1671–1694, 1998.
L. Chen, C. Lu, and Z. Zeng. A linear-time algorithm for paired-domination problem in strongly chordal graphs. Information processing letters, 110(1):20–23, 2009.
L. Chen, C. Lu, and Z. Zeng. Labelling algorithms for paired-domination problems in block and interval graphs. Journal of combinatorial optimization, 19(4):457–470, 2010.

延伸閱讀