透過您的圖書館登入
IP:3.128.226.211
  • 學位論文

載子在不同方向上之傳輸特性研究

Carrier Transport in Different Orientation on Semiconductor.

指導教授 : 鄭鴻祥

摘要


在現今的半導體科技中,元件電路通常是製作在(100)的晶圓上,且其通道方向為<110>方向。 為了改善元件中移動率的性質,我們期望在晶圓上的不同方向上的載子移動率可以帶來更好的效能。 在本篇論文中,我們利用霍爾棒圖騰來定義載子的移動方向並且測量其移動率。 我們在100K到300K之間測量數個不同的方向的載子移動率。 實驗結果利用了在不同方向上的有效質量不同和文獻上理論的計算可以得到驗證。 我們利用霍爾棒圖騰量測的結果可以得到在半導體材料中,<100>方向可以擁有較佳的載子移動率,可作於電子元件改變通道方向的依據。

關鍵字

方向性 移動率 霍爾效應 霍爾棒

並列摘要


In the present semiconductor technology, CMOS circuit are typically fabricated on (100) silicon substrates with <110> channel direction. In order to improve the carrier mobility in devices, we attempt to find out the highest mobility in different orientation on semiconductor. In this thesis, we define the channel direction and measure the carrier mobility by Hall bar measurement. The different mobility in several directions is measured from 100K to 300K. The experimental results can be interpreted by the effective mass along different directions, and the agreement with theoretical calculation is quite well. From the hall measurement in different orientation, <100> direction has much higher carrier mobility and is favorable for electronic devices.

並列關鍵字

orientation mobility Hall bar Hall Effect

參考文獻


[2] Chee WEE Liu, S. Maikap, and C.-Y. Yu, “Mobility-Enhancement Technologies”, IEEE, Circuit and Devices magazine, May/June, 2005.
[4] T. Sato, Y. Takeishi, and H. Hara, “Mobility anisotropy of electrons in inversion layers on oxidized silicon surfaces.” Phys. Rev. B, Condens.Matter, vol. 4, no.6 , pp.2263-2368, Dec. 1994.
[5] G. Cheroff, D. Critchlow, R. Bennard, and L. Terman, “IGFET circuit performance -n-channel versus p-channel,” IEEE J. Solid-State Circuits, vol.SSC-4,no.5,pp. 267-271
,Oct. 1969.
[6] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the unicersality of inversion layer mobility in Si MOSFET’s part 2- Effects of surface orientation ,” IEEE Trans. Electron Devices, vol. 41, no. 12, pp.2363-2368,Dec.1994.

延伸閱讀