From the studies of classical Buffon needle problem, the concept of Favard length had been investigated. It is a geometric quantity of a set by measuring its projections behaviors on lines. In R2, a particular case, the four-corner Cantor set, has been studied for years. By Besicovitch projection theorem, the Favard length of four-corner Cantor set is zero. A nature question that was asked is to establish a quantitative rate of the convergence of Favard length in terms of its n-th generation. The purposes of this thesis are to survey the limit behavior of Favard length of Cantor set and Cantor-like set in R2 and discuss if the pioneer’s result can be generalized to five-corner Cantor set.