透過您的圖書館登入
IP:18.119.29.99
  • 學位論文

學習攻擊深度強化學習代理的關鍵步驟

Learning Key Steps to Attack Deep Reinforcement Learning Agents

指導教授 : 林軒田

摘要


深度強化學習代理容易受到對抗式攻擊的影響。特別是最近的研究顯示,攻擊一些關鍵步驟即可有效降低代理的累積獎勵。然而所有現有的攻擊方法都使用人為設計的規則來定義這些關鍵步驟,並且尚不清楚如何能辨別更有效的關鍵步驟。本篇論文提出一種新的強化學習架構,該架構能通過與代理進行互動來學習關鍵步驟。這個架構不需要任何人類提供的規則或知識,並且可以與任何白盒或黑盒對抗式攻擊方案靈活地結合在一起。在不同設定下對Atari遊戲進行的實驗顯示,該架構優於其他識別有效關鍵步驟的方法。

並列摘要


Deep reinforcement learning agents are known to be vulnerable to adversarial attacks. In particular, recent studies have shown that attacking a few key steps is effective for decreasing the agent's cumulative reward. However, all existing attacking methods define those key steps with human-designed heuristics, and it is not clear how more effective key steps can be identified. This paper introduces a novel reinforcement learning framework that learns key steps through interacting with the agent. The proposed framework does not require any human heuristics nor knowledge, and can be flexibly coupled with any white-box or black-box adversarial attack scenarios. Experiments on benchmark Atari games across different scenarios demonstrate that the proposed framework is superior to existing methods for identifying effective key steps.

參考文獻


V. Behzadan and A. Munir. Vulnerability of deep reinforcement learning to policy induction attacks. In International Conference on Machine Learning and DataMining in Pattern Recognition, pages 262–275. Springer, 2017.
V. Behzadan and A. Munir. Whatever does not kill deep reinforcement learning, makes it stronger. arXiv preprint arXiv:1712.09344, 2017.
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.
B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. In Joint European conference on machine learning and knowledge discovery in databases, pages 387–402. Springer, 2013.
S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

延伸閱讀