本研究聚焦於同軸八旋翼無人機(Coaxial Octocopter)的效率優化,提出一套基於控制矩陣(Control Allocation Matrix)的系統設計與優化方法,旨在解決同軸無人機的推力效率與控制穩定性問題。同軸設計雖能在保持尺寸的同時提升推力,但因氣動干擾導致的效率損失及致動器飽和問題需進一步優化。 為此,本研究首先建立無人機的動力學與運動學模型,透過實驗平台量測馬達推力與扭矩數據,採用線性建模方式修正氣動干擾,並提出基於感測器數據的推力建模方法,提升模型精度。在控制分配方面,設計了一種基於零空間理論(Null space-Based)的電流最佳化策略,用於優化馬達推力分配。此外,針對控制矩陣中致動器飽和的問題,透過使用沿零空間偽逆方法(Pseudo Inverse Along the Null space,PAN)進行最佳化。 透過測試平台的實驗數據與 MATLAB 模擬結果驗證,所提出的方法能提升了同軸旋翼的推進效率與控制性能。本研究在控制器設計中採用了 PID 控制架構,並將控制矩陣方法應用於該架構中,進行無人機的姿態控制與動態響應測試,進一步驗證其效能。此研究展示了同軸優化與控制飽和優化在多旋翼無人機設計與測試中的應用價值,為未來高負載無人機的設計與效率提升提供了重要參考。
This study focuses on the efficiency optimization of a coaxial octocopter, proposing a system design and optimization method based on the control allocation matrix. It aims to address challenges related to thrust efficiency and control stability under coaxial copter. While the coaxial design enhances thrust while maintaining compact dimensions, it introduces aerodynamic interference that leads to efficiency loss and actuator saturation, requiring further optimization. To this end, the study establishes the dynamics and kinematics models of the UAV, measuring motor thrust and torque data via an experimental platform. A linear modeling approach is applied to correct aerodynamic interference, and a sensor-based thrust modeling method is proposed to improve model accuracy. In terms of control allocation, a current optimization strategy based on null-space theory is developed to optimize motor thrust distribution. Furthermore, to address actuator saturation in the control matrix, the study employs the Pseudo Inverse Along the Null space (PAN) method for optimization. Experimental data from the test platform and MATLAB simulation validate that the proposed methods significantly enhance the thrust efficiency and control performance of the coaxial rotor system. The study incorporates a PID control framework in the controller design and applies the control allocation matrix method to the framework for attitude control and dynamic response testing of the UAV, further verifying its effectiveness. This research highlights the practical value of coaxial optimization and control saturation optimization in the design and testing of multirotor UAVs, providing an important reference for the design and efficiency improvement of future high-payload UAVs.