透過您的圖書館登入
IP:216.73.216.102
  • 學位論文

阿瑞尼斯方程式於電動車電池系統可靠度分析上之應用

Application of Arrhenius Equation to the Reliability Analysis of Electric Vehicle Battery Systems

指導教授 : 吳文方
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


電池是電動車最重要的系統之一,現今電動車電池系統常使用鋰離子電池,是以本研究探討電動車用鋰離子電池的健康狀態(SOH)隨充電放電循環次數增加而衰退的趨勢,並特別探討操作溫度對電池可靠度衰退趨勢的影響。 本研究根據阿瑞尼斯-半經驗模型,基於鋰離子電池的充電放電循環次數與操作溫度的變化作為分析電池健康狀態變化的兩大因素,探討電動車用鋰離子電池的健康狀態。藉由設置特定電池健康狀態數值作為判定電池芯、電池系統是否失效的閾值,以可靠度工程理論評估電池芯與電池系統之可靠度,其中電動車電池系統的研究將通過使用串並聯複合系統與k-out-of-n系統建構並分析。研究結果顯示,每當鋰離子電池的運作環境溫度上升,電池芯健康狀態衰減速率將隨之增加,同時亦能觀察到平均未失效充電放電循環次數隨之減少,顯示出操作環境溫度與電池芯可靠度之關聯性。對於電池系統的可靠度,以串並聯複合系統建構電動車電車系統,設置失效閾值與實際案例相同時,能觀察到電池系統可靠度的表現與實際案例相近,代表此電池系統模型之合理性,能很好的評估電池系統的可靠度趨勢。 此成果將作為設計與評估電動車電池系統時的重要依據,協助並支撐未來電動車產業長遠發展。

並列摘要


Batteries are one of the most critical systems in electric vehicle (EV). Currently, lithium-ion batteries (li-ion batteries) are commonly used in EV battery systems. This study investigates the degradation trends of State of Health (SOH) in li-ion batteries used for EVs as reflected by the number of charge-discharge cycles, with particular emphasis on the impact of operating temperature on the variation on battery reliability degradation trends. This study is based on the Arrhenius Semi-empirical model, using the number of charge-discharge cycles of li-ion batteries and varying temperature in operating temperature as the two main factors to analyze the variations of the SOH of the li-ion batteries. We identify the potential failures of battery cells and battery systems by establishing specific SOH values as thresholds and utilizing reliability engineering theory to evaluate the reliability of these components. Specifically, we assess the system reliability of EV battery systems using Combined series-parallel systems and k-out-of-n systems. The study results indicate that whenever the operating temperature of li-ion batteries increase, the SOH degradative rate of the li-ion batteries will correspondingly rise and the reduction in average count of charge-discharge cycles. Also highlighting the correlation between operating temperature and the reliability of battery cells. Regarding battery systems reliability, constructing the model of an EV battery system using the Combined series-parallel systems. If the failure threshold is match actual cases, it’s showing that the reliability performance of the battery systems closely resembles case study. This shows the model's validity, demonstrating its efficacy in assessing the reliability trends of battery systems. The results of the study will serve as a crucially fundamental groundwork for the design and evaluation of EV battery systems, also assisting and supporting the long-term development of the EV industry in the future.

參考文獻


[1] Shen, W., Wang, N., Zhang, J., Wang, F., & Zhang, G. (2022). Heat Generation and Degradation Mechanism of Lithium-Ion Batteries during High-Temperature Aging. ACS Omega, 7(49), 44733–44742.
[2] Lin, X., Khosravinia, K., Hu, X., Li, J., & Lu, W. (2021). Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 87, 100953.
[3] Sanguesa, J. A., Torres-sanz, V., Garrido, P., Martinez, F. J., & Marquez-barja, J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372–404.
[4] Nogueira, T., Sousa, E., & Alves, G. R. (2022). Electric Vehicles Growth until 2030: Impact on the Distribution Network Power. Energy Reports, 8, 145–152.
[5] Muratori, M., Alexander, M., Arent, D., Bazilian, M., Cazzola, P., Dede, E. M., Farrell, J., Gearhart, C., Greene, D., Jenn, A., Keyser, M., Lipman, T., Narumanchi, S., Pesaran, A., Sioshansi, R., Suomalainen, E., Tal, G., Walkowicz, K., & Ward, J. (2021). The Rise of Electric Vehicles—2020 Status and Future Expectations. Progress in Energy, 3, 022002.

延伸閱讀